The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.
In coastal habitats artificial structures typically support lower biodiversity and can support greater numbers of non-native and opportunistic species than natural rocky reefs. Eco-engineering experiments are typically trialed to succeed; but arguably as much is learnt from failure than from success. Our goal was to trial a generic, cost effective, eco-engineering technique that could be incorporated into rock armouring anywhere in the world. Artificial rock pools were created from manipulated concrete between boulders on the exposed and sheltered sides of a causeway. Experimental treatments were installed in locations where they were expected to fail and compared to controls installed in locations in which they were expected to succeed. Control pools were created lower on the structure where they were immersed on every tidal cycle; experimental pools were created above mean high water spring tide which were only immersed on spring tides. We hypothesised that lower and exposed pools would support significantly higher taxon and functional diversity than upper and sheltered pools. The concrete pools survived the severe winter storms of 2013/14. After 12 months, non-destructive sampling revealed significantly higher mean taxon and functional richness in lower pools than upper pools on the exposed side only. After 24 months the sheltered pools had become inundated with sediments, thus failing to function as rock pools as intended. Destructive sampling on the exposed side revealed significantly higher mean functional richness in lower than upper pools. However, a surprisingly high number of taxa colonised the upper pools leading to no significant difference in mean taxon richness among shore heights. A high number of rare taxa in the lower pools led to total taxon richness being almost twice that of upper pools. These findings highlight that even when expected to fail concrete pools supported diverse assemblages, thus representing an affordable, replicable means of enhancing biodiversity on a variety of artificial structures.
Apis mellifera mellifera (Linnaeus), the Western European honey bee, is considered extinct in the wild over most of its range due largely to hybridisation and replacement by other subspecies, parasitism by Varroa destructor, habitat loss, and effects from agricultural pesticides. The purity of the subspecies within the managed cohort is also at risk over much of its range. Here, we investigated if honey bee colonies inhabited locations outside of the apiaries. In those we located, we explored how long the colony persisted and we investigated the genotypes of the bees using multiple markers. We show here that unmanaged free-living honey bee colonies are present and widespread in Ireland, inhabiting a mixture of nesting habitats with some colonies persisting naturally and unaided over multiple years. Molecular data including mitochondrial, microsatellite, and SNPs evidence indicate that the free-living population sampled is largely comprised of pure A. m. mellifera. Finally, we discuss the implications of conserving free-living A. m. mellifera in Ireland and its possible role in improving the fitness of the managed population both in Ireland and the rest of its European range.
Honey bee abdominal pigmentation is one of the most recognisable traits and it is often used by beekeepers as an indicator of M-lineage subspecies purity. However, this approach may negatively impact population diversity and is futile if there is no association between tergite colour patterns and the genetic background. To assess whether this trait can be used as a proxy for introgression proportions in M-lineage subspecies, we genotyped, with highly informative SNP assays, A. m. mellifera and A. m. iberiensis individuals displaying four different colour phenotypes. The SNP data detected highly introgressed bees exhibiting a black phenotype and, at the same time, pure or marginally introgressed bees with yellow banding patterns, in both subspecies. Despite these observations, contrary to A. m. iberiensis , in A. m. mellifera , introgression proportions revealed to be a significant predictor of abdominal pigmentation. Therefore, abdominal pigmentation could be used by A. m. mellifera conservationists to guide colony selection when genetic tools are unavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.