Demand for flexibility in electricity systems and the transition to the Smart Grid is increasing opportunities for demand response (DR). However, there are many barriers which prevent the full potential of DR being realised. Unlocking of this potential, through identification of DR enablers, can be aided through systematic classification and analysis of DR barriers. To this end, while previous works mostly focused on individual aspects, this paper develops a comprehensive 'socio-techno-economic' review, classification and analysis of DR barriers and enablers in a Smart Grid context. This provides an intellectual framework which may be used to underpin further work on the study and integration of DR. DR barriers are classified as either fundamental (i.e., relating to intrinsic human nature/essential enabling technology) or secondary (i.e., relating to anthropogenic institutions/or system feedbacks). Fundamental barriers are defined as economic, social or technological, whilst secondary barriers relate to political regulatory aspects, design of markets, physical (electrical network) issues, or to general understanding of DR. Subsequently, associated enablers for the defined barriers are suggested. Consideration of technical and commercial/social aspects for both power system and information and communication technology (the "internet of things") domains provides a foundational contribution to improve understanding of DR within the Smart Grid paradigm. Finally, the complexity resulting from connections between various barriers, enablers and the energy system generally, and the existence of the signature characteristics of complex systems is acknowledged and implications discussed.
Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F-score 91%-97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%-93% and F-score 88%-95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs.
Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.
Lameness in sheep is the biggest cause of concern regarding poor health and welfare among sheep-producing countries. Best practice for lameness relies on rapid treatment, yet there are no objective measures of lameness detection. Accelerometers and gyroscopes have been widely used in human activity studies and their use is becoming increasingly common in livestock. In this study, we used 23 datasets (10 non-lame and 13 lame sheep) from an accelerometer-and gyroscope-based ear sensor with a sampling frequency of 16 Hz to develop and compare algorithms that can differentiate lameness within three different activities (walking, standing and lying). We show for the first time that features extracted from accelerometer and gyroscope signals can differentiate between lame and non-lame sheep while standing, walking and lying. The random forest algorithm performed best for classifying lameness with an accuracy of 84.91% within lying, 81.15% within standing and 76.83% within walking and overall correctly classified over 80% sheep within activities. Both accelerometer-and gyroscope-based features ranked among the top 10 features for classification. Our results suggest that novel behavioural differences between lame and non-lame sheep across all three activities could be used to develop an automated system for lameness detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.