The effect of pore size and porosity on elastic modulus, strength, cell attachment and cell proliferation was studied for Ti porous scaffolds manufactured via powder metallurgy and sintering. Porous scaffolds were prepared in two ranges of porosities so that their mechanical properties could mimic those of cortical and trabecular bone respectively.Space-holder engineered pore size distributions were carefully determined to study the impact that small changes in pore size may have on mechanical and biological behaviour. The Young's moduli and compressive strengths were correlated with the relative porosity.Linear, power and exponential regressions were studied to confirm the predictability in the characterisation of the manufactured scaffolds and therefore establish them as a design tool for customisation of devices to suit patients' needs. The correlations were stronger for the linear and the power law regressions and poor for the exponential regressions. The optimal pore microarchitecture (i.e. pore size and porosity) for scaffolds to be used in bone grafting for cortical bone was set to <212m with volumetric porosity values of 27-37%, and for trabecular tissues to 300-500m with volumetric porosity values of 54-58%. The pore size range 212-300m with volumetric porosity values of 38-56% was reported as the least favourable to cell proliferation in the longitudinal study of 12 days of incubation.
The effect of a large amount of kaolin (China clay) on the viscosity, cure, hardness, Young’s modulus, tensile strength, elongation at break, stored energy density at break, tear energy and compression set resistance of some sulfur-cured natural rubber, polybutadiene rubber and ethylene-propylene-diene rubber composites was investigated. The kaolin surface had been pre-treated with 3-mercaptopropyltrimethoxysilane to improve its dispersion in the rubbers. For natural rubber, the hardness and Young’s modulus improved, tensile strength and tear energy were unchanged and the remaining properties deteriorated when kaolin was added. The viscosity increased and the scorch and optimum cure times decreased whilst the cure rate rose with kaolin. For polybutadiene rubber and ethylene-propylene-diene rubber, with the exception of the compression set resistance, all the properties including the viscosity gained from the kaolin. The kaolin was found to be extending or non-reinforcing filler for natural rubber, and highly reinforcing for polybutadiene rubber and EPDM. In addition, the scorch and optimum cure times and cure rate of polybutadiene rubber benefitted, whereas with the exception of the scorch time, the optimum cure time and cure rate of ethylene-propylene-diene rubber were adversely affected by kaolin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.