Summary
Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated
de novo
at prospective cargo remains unknown. Phagophore formation
in situ
would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.
Bacterial lipopolysaccharide triggers human caspase-4 (murine caspase-11) to cleave gasdermin-D and induce pyroptotic cell death. How lipopolysaccharide sequestered in membranes of cytosol-invading bacteria activates caspases remains unknown. Here we show that in interferon-γ stimulated cells guanylate binding proteins (GBPs) assemble on the surface of Gram-negative bacteria into polyvalent signaling platforms required for activation of caspase-4. Caspase-4 activation is hierarchically controlled by GBPs; GBP1 initiates platform assembly, GBP2 and GBP4 control caspase-4 recruitment, whereas GBP3 governs caspase-4 activation. In response to cytosol-invading bacteria, activation of caspase-4 through the GBP platform is essential to induce gasdermin-D dependent pyroptosis and processing of interleukin-18, thereby destroying the replicative niche for intracellular bacteria and alerting neighboring cells, respectively. Caspase-11 and GBPs epistatically protect mice against lethal bacterial challenge. Multiple antagonists of the pathway encoded by
Shigella flexneri
, a cytosol-adapted bacterium, provide compelling evolutionary evidence for the importance of the GBP-Caspase-4 pathway in anti-bacterial defense.
SummaryInterferon exposure boosts cell-autonomous immunity for more efficient pathogen control. But how interferon-enhanced immunity protects the cytosol against bacteria and how professionally cytosol-dwelling bacteria avoid clearance are insufficiently understood. Here we demonstrate that the interferon-induced GTPase family of guanylate-binding proteins (GBPs) coats Shigella flexneri in a hierarchical manner reliant on GBP1. GBPs inhibit actin-dependent motility and cell-to-cell spread of bacteria but are antagonized by IpaH9.8, a bacterial ubiquitin ligase secreted into the host cytosol. IpaH9.8 ubiquitylates GBP1, GBP2, and GBP4 to cause the proteasome-dependent destruction of existing GBP coats. This ubiquitin coating of Shigella favors the pathogen as it liberates bacteria from GBP encapsulation to resume actin-mediated motility and cell-to-cell spread. We conclude that an important function of GBP recruitment to S. flexneri is to prevent the spread of infection to neighboring cells while IpaH9.8 helps bacterial propagation by counteracting GBP-dependent cell-autonomous immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.