Retroviral insertions that activate proto-oncogenes are a primary cause of tumors in certain strains of mice. The AKXD recombinant inbred mice are predisposed to a variety of leukemias and lymphomas as a result of viral integration. One common insertion site, the ecotropic viral insertion site 3 (Evi3), has been implicated in most B-cell tumors in the AKXD-27 strain. The Evi3 gene encodes a zinc-finger protein with sequence similarity to the Early B-cell Factor-Associated Zinc-finger gene (EBFAZ). We show that the Evi3 gene is overexpressed in several tumors with viral insertions at Evi3, which results in the upregulation of Early B-cell Factor (EBF)-target gene expression, suggesting that Evi3 modulates EBF activity. Reconstitution of primary leukemia cells showed that these tumors express high densities of the Bcell surface proteins CD19 and CD38, which are EBF targets. Using a transactivation assay, we show that the terminal six zinc-fingers of Evi3 are required for modification of EBF activity. This is the first evidence that Evi3 expression in tumors alters the level of EBF target genes, and the first characterization of the Evi3 protein domains required for modulation of EBF activity. Further, these data imply that Evi3 misexpression initiates tumorigenesis by perturbing B-cell development via an interaction with EBF.
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFjB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.