The Origins Billions Star Survey is a mission concept addressing the astrophysics of extrasolar planets, Galactic structure, the Galactic halo and tidal streams, the Local Group and local supercluster of galaxies, dark matter, star formation, open clusters, the solar system, and the celestial reference frame by determining the position, parallax, and proper motion, as well as photometry, for billions of stars down to 23rd visual magnitude. It is capable of surveying the entire celestial sphere or dwelling on a star field by varying the cadence of observations. The mission's ability to measure objects fainter than 17th magnitude allows a large number of extragalactic compact objects to be observed, making the astrometric measurements absolute. The project mission accuracy is comparable to Gaia for a survey mission. Improved accuracy can be achieved by dwelling on a particular star field or by using the Gaia positions at 14th magnitude to improve the positions of objects at the 18th-23rd visual magnitudes.
I N THE above article [1], on the top line in Table 3, a decimal place was dropped in the piezoelectric charge coefficient d 33 (µm/V) at 100 K. The data reported is 10 times larger than the measured data from the slope in Figure 6 for all three maximum voltages. Here, we provide the correct table. TABLE 3. Effective piezoelectric coefficient d 33 and hysteresis terms as a function of temperature and maximum voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.