Microglial cells regulate neural homeostasis by coordinating both immune responses and clearance of debris, and the P2X7 receptor for extracellular ATP plays a central role in both functions. The P2X7 receptor is primarily known in microglial cells for its immune signaling and NLRP3 inflammasome activation. However, the receptor also affects the clearance of extracellular and intracellular debris through modifications of lysosomal function, phagocytosis, and autophagy. In the absence of an agonist, the P2X7 receptor acts as a scavenger receptor to phagocytose material. Transient receptor stimulation induces autophagy and increases LC3-II levels, likely through calcium-dependent phosphorylation of AMPK, and activates microglia to an M1 or mixed M1/M2 state. We show an increased expression of Nos2 and Tnfa and a decreased expression of Chil3 (YM1) from primary cultures of brain microglia exposed to high levels of ATP. Sustained stimulation can reduce lysosomal function in microglia by increasing lysosomal pH and slowing autophagosome-lysosome fusion. P2X7 receptor stimulation can also cause lysosomal leakage, and the subsequent rise in cytoplasmic cathepsin B activates the NLRP3 inflammasome leading to caspase-1 cleavage and IL-1β maturation and release. Support for P2X7 receptor activation of the inflammasome following lysosomal leakage comes from data on primary microglia showing IL-1β release following receptor stimulation is inhibited by cathepsin B blocker CA-074. This pathway bridges endolysosomal and inflammatory roles and may provide a key mechanism for the increased inflammation found in age-dependent neurodegenerations characterized by excessive lysosomal accumulations. Regardless of whether the inflammasome is activated via this lysosomal leakage or the better-known K+-efflux pathway, the inflammatory impact of P2X7 receptor stimulation is balanced between the autophagic reduction of inflammasome components and their increase following P2X7-mediated priming. In summary, the P2X7 receptor modulates clearance of extracellular debris by microglial cells and mediates lysosomal damage that can activate the NLRP3 inflammasome. A better understanding of how the P2X7 receptor alters phagocytosis, lysosomal health, inflammation, and autophagy can lead to therapies that balance the inflammatory and clearance roles of microglial cells.
The transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations. The TRPML agonist ML-SA1 raised cytoplasmic calcium levels in mouse RPE cells, hesRPE cells, and ARPE-19 cells; this increase was rapid, robust, reversible, and reproducible. The increase was not altered by extracellular calcium removal or by thapsigargin but was eliminated by lysosomal rupture with glycyl-l-phenylalanine-β-naphthylamide. Treatment with desipramine to inhibit acid sphingomyelinase or YM201636 to inhibit PIKfyve also reduced the cytoplasmic calcium increase triggered by ML-SA1, whereas RPE cells from TRPML1 mice showed no response to ML-SA1. Cotreatment with chloroquine and U18666A induced formation of neutral, autofluorescent lipid in RPE lysosomes and decreased lysosomal Ca release. Lysosomal Ca release was also impaired in RPE cells from the ATP-binding cassette, subfamily A, member 4 mouse model of Stargardt's retinal dystrophy. Neither TRPML1 mRNA nor total lysosomal calcium levels were altered in these models, suggesting a more direct effect on the channel. In summary, stimulation of TRPML1 elevates cytoplasmic calcium levels in RPE cells, but this response is reduced by lysosomal accumulation.-Gómez, N. M., Lu, W. Lim, J. C., Kiselyov, K., Campagno, K. E., Grishchuk, Y., Slaugenhaupt, S. A., Pfeffer, B., Fliesler, S. J., Mitchell, C. H. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.
The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE) cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.
Cross-reactions between innate immunity, lysosomal function, and purinergic pathways may link signaling systems in cellular pathologies. We found activation of toll-like receptor 3 (TLR3) triggers lysosomal ATP release from both astrocytes and retinal pigmented epithelial (RPE) cells. ATP efflux was accompanied by lysosomal acid phosphatase and beta hexosaminidase release. Poly(I:C) alkalinized lysosomes, and lysosomal alkalization with bafilomycin or chloroquine triggered ATP release. Lysosomal rupture with glycyl-L-phenylalanine-2-naphthylamide (GPN) eliminated both ATP and acid phosphatase release. Secretory lysosome marker LAMP3 colocalized with VNUT, while MANT-ATP colocalized with LysoTracker. Unmodified membrane-impermeant 21-nt and “non-targeting” scrambled 21-nt siRNA triggered ATP and acid phosphatase release, while smaller 16-nt RNA was ineffective. Poly(I:C)-dependent ATP release was reduced by TBK-1 block and in TRPML1−/− cells, while TRPML activation with ML-SA1 was sufficient to release both ATP and acid phosphatase. The ability of poly(I:C) to raise cytoplasmic Ca2+ was abolished by removing extracellular ATP with apyrase, suggesting ATP release by poly(I:C) increased cellular signaling. Starvation but not rapamycin prevented lysosomal ATP release. In summary, stimulation of TLR3 triggers lysosomal alkalization and release of lysosomal ATP through activation of TRPML1; this links innate immunity to purinergic signaling via lysosomal physiology, and suggests even scrambled siRNA can influence these pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.