Adeno-associated virus (AAV)-mediated gene therapy may provide durable protection from bleeding events and reduce treatment burden for people with hemophilia A (HA). However, pre-existing immunity against AAV may limit transduction efficiency and hence treatment success. Global data on the prevalence of AAV serotypes are limited. In this global, prospective, noninterventional study, we determined the prevalence of pre-existing immunity against AAV2, AAV5, AAV6, AAV8, and AAVrh10 among people ≥12 years of age with HA and residual FVIII levels ≤2 IU/dL. Antibodies against each serotype were detected using validated, electrochemiluminescent-based enzyme-linked immunosorbent assays. To evaluate changes in antibody titers over time, 20% of participants were retested at 3 and 6 months. In total, 546 participants with HA were enrolled at 19 sites in 9 countries. Mean (standard deviation) age at enrollment was 36.0 (14.87) years, including 12.5% younger than 18 years, and 20.0% 50 years of age and older. On day 1, global seroprevalence was 58.5% for AAV2, 34.8% for AAV5, 48.7% for AAV6, 45.6% for AAV8, and 46.0% for AAVrh10. Considerable geographic variability was observed in the prevalence of pre-existing antibodies against each serotype, but AAV5 consistently had the lowest seroprevalence across the countries studied. AAV5 seropositivity rates were 51.8% in South Africa ( n = 56), 46.2% in Russia ( n = 91), 40% in Italy ( n = 20), 37.2% in France ( n = 86), 26.8% in the United States ( n = 71), 26.9% in Brazil ( n = 26), 28.1% in Germany ( n = 89), 29.8% in Japan ( n = 84), and 5.9% in the United Kingdom ( n = 17). For all serotypes, seropositivity tended to increase with age. Serostatus and antibody titer were generally stable over the 6-month sampling period. As clinical trials of AAV-mediated gene therapies progress, data on the natural prevalence of antibodies against various AAV serotypes may become increasingly important.
The regulatory standards of the United States Food and Drug Administration (FDA) require substantial evidence of effectiveness from adequate and well-controlled trials that typically use a valid comparison to an internal concurrent control. However, when it is not feasible or ethical to use an internal control, particularly in rare disease populations, relying on external controls may be acceptable. To better understand the use of external controls to support product development and approval, we reviewed FDA regulatory approval decisions between 2000 and 2019 for drug and biologic products to identify pivotal studies that leveraged external controls, with a focus on select therapeutic areas. Forty-five approvals were identified where FDA accepted external control data in their benefit/risk assessment; they did so for many reasons including the rare nature of the disease, ethical concerns regarding use of a placebo or no-treatment arm, the seriousness of the condition, and the high unmet medical need. Retrospective natural history data, including retrospective reviews of patient records, was the most common source of external control (44%). Other types of external control were baseline control (33%); published data (11%); and data from a previous clinical study (11%). To gain further insights, a comprehensive evaluation of selected approvals utilizing different types of external control is provided to highlight the variety of approaches used by sponsors and the challenges encountered in supporting product development and FDA decision making; particularly, the value and use of retrospective natural history in the development of products for rare diseases. Education on the use of external controls based on FDA regulatory precedent will allow for continued use and broader application of innovative approaches to clinical trial design, while avoiding delays in product development for rare diseases. Learnings from this review also highlight the need to update regulatory guidance to acknowledge the utility of external controls, particularly retrospective natural history data.
DNA sequences have been obtained for embryonic chick feather and scale keratin genes. Strong homologies exist between the protein coding regions of the two gene types and between the deduced amino acid sequences of the keratin proteins. Scale keratins are larger than feather keratins and the size difference is mainly attributable to four 13‐amino acid repeats between residues 77 and 128 which compose a peptide sequence rich in glycine and tyrosine. The strong similarities between the two peptide structures for feather and scale in the homologous regions suggests a similar conformation within the protein filaments. A likely consequence is that the additional repeat region of the scale protein is located externally to the core filament. Tissue‐specific features of filament aggregation may be attributable to this one striking sequence difference between the constituent proteins. It is believed that the genes share a common ancestry and that feather‐like keratin genes may have evolved from a scale keratin gene by a single deletion event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.