Glutamate has traditionally been regarded as an excitatory neurotransmitter. Synaptic activation of ionotropic glutamate receptors mediates fast EPSPs in the CNS. Moreover, activation of metabotropic glutamate receptors (mGluRs), which are coupled to second messenger effector systems via GTP-binding proteins (G-proteins), results in the expression of slow EPSPs. We have now examined the response of basolateral amygdala (BLA) neurons to activation of postsynaptic mGluRs. In approximately 78% of BLA neurons examined, activation of postsynaptic mGluRs results in membrane hyperpolarization and an associated decrease in membrane input resistance or a hyperpolarization followed by a depolarization associated with an increase in input resistance. The purpose of this study was to address the mechanisms underlying the membrane hyperpolarization. Here, we report that the ACPD-induced hyperpolarization is insensitive to TTX, is dependent on extracellular K+ concentrations, and has a reversal potential (-84 mV) close to that estimated from the Nernst equation for an increase in a K+ conductance. In addition, the ACPD response is resistant to (1) intracellular chloride loading, (2) the GABAB receptor antagonist CGP55845A, (3) the ACh receptor antagonist atropine, and (4) the ionotropic glutamate receptor antagonists CNQX and APV. These data suggest that the hyperpolarization results from a direct activation of postsynaptic mGluRs on neurons of the BLA. Furthermore, we performed studies that suggest that the hyperpolarization is G-protein mediated and results from activation of a TEA-sensitive, calcium-dependent potassium conductance. The sensitivity of this conductance to thapsigargin further suggests that this response requires the release of calcium from intracellular stores. In summary, these data suggest a role for glutamate as an inhibitory transmitter in the BLA during periods of metabotropic glutamate receptor activation. In nuclei such as the BLA that are exquisitely sensitive to seizure induction, an inhibitory response to glutamate may act to delay the onset of epileptogenesis.
1. Metabotropic glutamate receptor (mGluR)-agonist-induced hyperpolarizations and corresponding outward currents were analyzed in basolateral amygdala (BLA) neurons in rat brain slice preparations with current-clamp and single-electrode voltage-clamp recording to characterize the mGluR subtype(s) and the ion channel(s) mediating this response. 2. The mGluR agonist (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) induced a membrane hyperpolarization or outward current in BLA neurons in a concentration-dependent manner (median effective concentration = 34 microM; range = 10-200 microM); the 1S,3R-ACPD hyperpolarizations are recorded in 89% of neurons that accommodate or cease firing in response to a 400-ms depolarizing current injection (0.5 nA). 3. mGluR agonists elicited hyperpolarizations or outward currents in a concentration-dependent manner in the following rank order of potency: (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I) > 1S,3R-ACPD > (s)-4-carboxyphenylglycine = (RS)-4-carboxy-3-hydroxyphenylglycine (4C3HPG) > L-aminophosphonobutyric acid > (1S,3S)-1-amino-cyclopentane-1,3-dicarboxylic acid. In contrast, the mGluR agonists quisqualate and ibotenate induced only depolarizations in the presence of D-2-amino-5-phosphonovalerate and 6-cyano-7-nitroquinoxaline-2,3-dione in BLA neurons. 4. The 1S,3R-ACPD-induced outward current is mediated through a large-conductance calcium-dependent potassium (BK) conductance. The BK channel blockers iberiotoxin and charybdotoxin blocked the response, as did the potassium channel blockers tetraethylammonium and 4-aminopyridine; the small-conductance calcium-activated potassium channel blocker apamin did not affect the response. 5. The mGluR-agonist-induced hyperpolarization is blocked in amygdala slices from animals pretreated with pertussis toxin (PTX). 1S,3R-ACPD hyperpolarizations were recorded in neurons contralateral but not ipsilateral to the site of PTX injection. 6. The antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG, 500 microM) reduced significantly the 1S,3R-ACPD-induced hyperpolarization. 7. In conclusion, the relative potency of L-CCG-I and 4C3HPG in evoking only hyperpolarizations (outward currents) in accommodating neurons, and the observation that MCPG (500 microM) reduces the hyperpolarization, suggest that a group-II-like mGluR underlies the hyperpolarizing response. The mGluR-induced response is sensitive to iberiotoxin and to pretreatment with PTX, suggesting activation of BK channels through a group II mGluR linked to a PTX-sensitive G protein in BLA neurons.
1. Intracellular recordings were made from neurons of the basolateral amygdala (BLA) in in vitro slice preparations to determine long-term differences in metabotropic glutamate receptor (mGluR) agonist-induced membrane responses in control and amygdala-kindled rats. 2. (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine-1 (L-CCG-I; 100 microM) typically evoked a hyperpolarization/outward current in control BLA neurons; the hyperpolarization is mediated through a group-II-like mGluR subtype of receptor and is recorded in accommodating neurons that cease firing in the presence of a long (400 ms) depolarizing current injection (0.5 nA). In amygdala-kindled slices, L-CCG-I (100 microM) hyperpolarized only 1 of 13 BLA neurons. 3. 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) (100 microM) elicited a hyperpolarization/depolarization (outward/inward current) in control neurons and evoked only a membrane depolarization (inward current) in kindled BLA neurons; this depolarization is similar to that mediated by group I mGluR activation in other neurons. 4. In control nonaccommodating neurons the concentration-response relationship for the 1S,3R-ACPD-induced inward current had a median effective concentration (EC50) of 49 microM and a maximum amplitude of 182 +/- 30 (mean +/- SE) pA. In kindled nonaccommodating neurons the EC50 of the concentration-response relationship for 1S,3R-ACPD was shifted to 29 microM and the maximum value increased to 265 +/- 15 pA, reflecting an increase in efficacy. 5. These data suggest that amygdala kindling causes lasting changes in mGluR responses in the BLA reflecting a downregulation of a group-II-like mGluR subtype mediating the hyperpolarizing response and an upregulation of a group I mGluR1 or 5 subtype. The hyperpolarizing response reduced by kindling and the increase in the group I mGluR response may reflect an alteration in the balance between inhibition and excitation and may contribute to the transition to epileptiform bursting in kindled neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.