A full list of affiliations appears at the end of the paper. 'N euroglia' or 'glia' are collective terms describing cells of neuroepithelial (oligodendrocytes, astrocytes, oligodendrocyte progenitor cells, ependymal cells), neural crest (peripheral glia), and myeloid (microglia) origin. Changes in neuroglia associated with diseases of the CNS have been noted, characterized, and conceptualized from the very dawn of neuroglial research. Rudolf Virchow, in a lecture to students and medical doctors in 1858, stressed that 'this very interstitial tissue [that is, neuroglia] of the brain and spinal marrow is one of the most frequent seats of morbid change... ' 1. Changes in the shape, size, or number of glial cells in various pathological contexts have been frequently described by prominent neuroanatomists 2. In particular, hypertrophy of astrocytes was recognized very early as an almost universal sign of CNS pathology: 'the protoplasmic glia elements [that is, astrocytes] are really the elements which exhibit a morbid hypertrophy in pathological conditions' 3. Neuroglial proliferation was thought to accompany CNS lesions, leading to early suggestions that proliferating glia fully replaced damaged neuronal elements 4. Thus, a historical consensus was formed that a change in 'the appearance of neuroglia serves as a delicate indicator of the action of noxious influences upon the central nervous system, ' and the concept of 'reactionary change or gliosis' was accepted 5. While the origin of 'gliosis' is unclear (glia + osis in Greek means 'glial condition or process'; in Latin the suffix-osis acquired the additional meaning of 'disease'; hence 'astrogliosis'
Basal synaptic transmission involves the release of neurotransmitters at individual synapses in response to a single action potential. Recent discoveries show that astrocytes modulate the activity of neuronal networks upon sustained and intense synaptic activity. However, their ability to regulate basal synaptic transmission remains ill defined and controversial. Here, we show that astrocytes in the hippocampal CA1 region detect synaptic activity induced by single-synaptic stimulation. Astrocyte activation occurs at functional compartments found along astrocytic processes and involves metabotropic glutamate subtype 5 receptors. In response, astrocytes increase basal synaptic transmission, as revealed by the blockade of their activity with a Ca(2+) chelator. Astrocytic modulation of basal synaptic transmission is mediated by the release of purines and the activation of presynaptic A(2A) receptors by adenosine. Our work uncovers an essential role for astrocytes in the regulation of elementary synaptic communication and provides insight into fundamental aspects of brain function.
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.