Our hypothesis was that cross-linked UHMWPE stabilized with vitamin-E would be wear and fatigue resistant. Acetabular liners were radiation cross-linked, doped with vitamin E and γ-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body bone cement particles, respectively; a four to ten-fold decrease from that of conventional UHMWPE. The ultimate strength, yield strength, elongation-atbreak and fatigue resistance of vitamin E-stabilized UHMWPE were significantly higher than that of 100-kGy irradiated and melted UHMWPE and were unaffected by accelerated aging. Rim impingement testing with 3.7 mm-thick acetabular liners up to 2 million-cycles showed no significant damage of the cross-linked liners compared to conventional, gamma-sterilized in inert UHMWPE vitamin-E stabilized liners. The data indicate good wear properties and improved mechanical and fatigue properties for vitamin-E stabilized cross-linked UHMWPE.
Vitamin E-doped, radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) is developed as an alternate oxidation and wear resistant bearing surface in joint arthroplasty. We analyzed the diffusion behavior of vitamin E through UHMWPE and predicted penetration depth following doping with vitamin E and subsequent homogenization in inert gas used to penetrate implant components with vitamin E. Cross-linked UHMWPE (65-and 100-kGy irradiation) had higher activation energy and lower diffusion coefficients than uncross-linked UHMWPE, but there were only slight differences in vitamin E profiles and penetration depth between the two doses. By using homogenization in inert gas below the melting point of the polymer following doping in pure vitamin E, the surface concentration of vitamin E was decreased and vitamin E stabilization was achieved throughout a desired thickness. We developed an analytical model based on Fickian theory that closely predicted vitamin E concentration as a function of depth following doping and homogenization.
The oxidation and loss of crosslink density of the irradiated and melted UHMWPE was surprising. Two potential mechanisms that might alter the oxidative stability of UHMWPE in vivo are cyclic loading and absorption of lipids. Both of these mechanisms can generate new free radicals in UHMWPE and can initiate and propagate its oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.