Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.
This work describes the in situ synthesis of oligonucleotide arrays on glass surfaces. These arrays are composed of features defined and separated by differential surface tension (surface tension arrays). Specifically, photolithographic methods were used to create a series of spatially addressable, circular features containing an amino-terminated organosilane coupled to the glass through a siloxane linkage. Each feature is bounded by a perfluorosilanated surface. The differences in surface energies between the features and surrounding zones allow for chemical reactions to be readily localized within a defined site. The aminosilanation process was analyzed using contact angle, X-ray photoelectron spectroscopy (XPS), and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS). The efficiency of phosphoramidite-based oligonucleotide synthesis on these surface tension arrays was measured by two methods. One method, termed step-yields-by-hybridization, indicates an average synthesis efficiency for all four (A,G,C,T) bases of 99.9 +/- 1.1%. Step yields measured for the individual amidite bases showed efficiencies of 98.8% (dT), 98.0% (dA), 97.0% (dC), and 97.6% (dG). The second method for determining the amidite coupling efficiencies was by capillary electrophoresis (CE) analysis. Homopolymers of dT (40- and 60mer), dA (40mer), and dC (40mer) were synthesized on an NH(4)OH labile linkage. After cleavage, the products were analyzed by CE. Synthesis efficiencies were calculated by comparison of the full-length product peak with the failure peaks. The calculated coupling efficiencies were 98.8% (dT), 96.8% (dA), and 96.7% (dC).
While base-specific support is commonly used for single-column oligodeoxynucleotide synthesis, the universal linker is critical for high-throughput synthesis of potentially thousands of samples in a single run. Here, we report conditions for cleavage and complete dephosphorylation of two commercial universal linkers, UnySupport and UnyLinker, processed in the gas phase (NH(3)) using our custom device. First, we compared the average yield of T10mers over time (15, 30, 60, 120, and 240 minutes, 40 psi, 80°C and 90°C). For samples processed with water added prior to incubation, we discovered a substantial increase in yield compared to those left dry (up to 55%). This was also the case for samples subjected to increases in chamber pressure (10, 20, 30 and 40 psi, 120 minutes, 80°C and 90°C). Next, we compared the effects of increased temperature, pressure and incubation times on the rates of dephosphorylation. We found the optimum conditions to be either 10 psi, 120 minutes at 80°C or 60 minutes at 90°C; in both cases, water added to columns prior to incubation had a substantial effect on rate of reaction as well as overall yield compared with those left dry. Finally, performance between the two linkers was similar enough to conclude each fulfills the desired requirements for mainstream, high-throughput oligodeoxynucleotide cleavage/deprotection and dephosphorylation in the gas phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.