A streamline curvature throughflow numerical approach is assessed and modified to better approximate the flow fields of transonic axial compression systems. Improvements in total pressure loss modeling are implemented, central to which is a physics-based shock model, to ensure accurate and reliable off-design performance prediction. The new model accounts for shock geometry changes, with shock loss estimated as a function of inlet relative Mach number, blade section loading (flow turning), solidity, leading edge radius, and suction surface profile. Data from a single-stage, isolated rotor provide the basis for experimental comparisons. Improved performance prediction is shown. The importance of properly accounting for shock geometry and loss changes with operating conditions is demonstrated.
A streamline curvature throughflow numerical approach is assessed and modified to better approximate the flow fields of transonic axial compression systems. Improvements in total pressure loss modeling are implemented, central to which is a physics-based shock model, to ensure accurate and reliable off-design performance prediction. The new model accounts for shock geometry changes, with shock loss estimated as a function of inlet relative Mach number, blade section loading (flow turning), solidity, leading edge radius, and suction surface profile. Data from a single-stage, isolated rotor provide the basis for experimental comparisons. Improved performance prediction is shown. The importance of properly accounting for shock geometry and loss changes with operating conditions is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.