Lasercom terminals often scan an area of uncertainty during acquisition with a wide-divergence beacon beam. Once the terminal has established cooperative tracking with the remote terminal, a narrow divergence beam is used for communication. A mechanism that enables continuous beam divergence control can provide significant size, weight, and power (SWaP) benefits to the terminal. First, the acquisition and the communication beams can be launched from the same fiber so only a single high-power optical amplifier is required. Second, by providing mid-divergences, it eases the remote terminal's transition from the acquisition phase to the communication phase. This paper describes a mechanism that provides gradual, progressive adjustment of far-field beam divergence, from wide divergence (>300 μrad FWHM) through collimated condition (38 μrad FWHM) and that works over a range of wavelengths. The mechanism is comprised of a variable-thickness optical element, formed by a pair of opposing wedges that is placed between the launch fiber and the collimating lens. Variations in divergence with no beam blockage are created by laterally translating one wedge relative to a fixed wedge. Divergence is continuously adjustable within the thickness range, allowing for a coordinated transition of divergence, wavelength, and beam power. Measurements of this low-loss, low-wavefront error assembly show that boresight error during divergence transition is maintained to a fraction of the communication beamwidth over wavelength and optical power ranges.
Laser communication offers advantages over traditional RF communication, including reduced size, weight, and power, higher data rates, and resistance to jamming. However, existing beam directors used for large field-of-regard lasercom terminals have limitations. Traditional gimbals require either domes or large conformal windows to achieve large fields of regard. Risley prism-based beam directors have temperature-and wavelength-dependent pointing necessitating tight temperature control and pointing correction techniques. Other methods, like liquid crystal optical phased array beam directors, have low transmittance and low technology readiness levels (TRLs). This paper presents a detailed design and preliminary performance results of a prototype Compact Optical Gimbal (COG) beam director that provides a 2 inch beam over a +/-65 o field-of-regard through a small (~12 inch) flat window. The COG differs from the traditional gimbal in that it includes three-axis steering with off-axis elevation and dither control, and a folded refractive afocal telescope incorporated into the body of the gimbal to minimize size. The COG's optical system does not have the pointing challenges characteristic of Risley prisms, and it utilizes high TRL components, including many commercial off-theshelf parts, to simplify implementation. The compact size and performance support a variety of beam steering applications and platforms.
Conventional windows for airborne payloads are often discontinuous with the aircraft or pod skin. A protruding structure or hollow cavity increases aerodynamic drag, which consumes more fuel and thus reduces the amount of time available on-station. These geometries give rise to turbulent aero-optical effects, which can reduce the payload's optical performance because it has to see through turbulence. This paper describes a multi-paned or segmented window concept that matches the local topology of the aircraft pod or skin. This approach is suitable for optical payloads having multiple fixed fields-of-view such as staring infrared search and track systems, but not scanning systems. This approach for creating a near-conformal window assembly should be particularly useful for rapid prototyping of windows for airborne optical payloads, providing a nearer-term alternative to monolithic windows that are ground and polished into complex shapes. In this paper, a 14-inch diameter pod faring with three window segments was chosen as a point design for a notional airborne optical payload. Fused silica planar windowpanes were fabricated with matching, mating mitered edges. The panes were chemically bonded directly to each other with a sodium-silicate solution. The bonding process and fixturing are described. The resulting glass bond is strong and minimizes the non-useable seam between panes. This approach increases the clear aperture of each pane compared with windowpanes bonded into individual mechanical bezels. Interferometric measurements of the prototype show no degradation in transmitted wavefront error after silicate bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.