Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image processing” inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density.
Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of the surviving retinal neurons provides an alternative route for delivery of visual information. We demonstrate that subretinal arrays with 70 μm photovoltaic pixels provide highly localized stimulation, with electrical and visual receptive fields of comparable sizes in rat retinal ganglion cells. Similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies, adaptation to static images and non-linear spatial summation. In rats with retinal degeneration, these photovoltaic arrays provide spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in pigmented rats. Ease of implantation of these wireless and modular arrays, combined with their high resolution opens the door to functional restoration of sight.
To understand a neural circuit requires knowing its connectivity. This paper reports measurements of functional connectivity between the input and ouput layers of the retina at single cell resolution and its implications for color vision. Multi-electrode technology was employed to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol, small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long and middle wavelength sensitive cones. However, only OFF midget cells frequently received strong input from short wavelength sensitive cones. ON and OFF midget cells exhibited a small non-random tendency to selectively sample from either long or middle wavelength sensitive cones, to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.Color vision requires neural circuitry to compare signals from spectrally distinct cone types. For example, the signature of primate color vision -red-green and blue-yellow color opponency -implies that neural circuits pit signals from different cone types against one another. However, the pattern of connectivity between the (L)ong, (M)iddle, and (S)hort Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Contact: E.J. Chichilnisky, Systems Neurobiology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ej@salk.edu, phone: (858) 453-4100 x1286. * Equal contributionsAuthor Contributions: G.D.F., J.L.G., A.S., and E.J.C. conceived the experiments. G.D.F., J.L.G., A.S., M.G., J.S., and E.J.C. performed the electrophysiological experiments. G.D.F, J.L.G., A.S., M.G., T.A.M., and L.P., analyzed the data. A.S., D.E.G., K.M., W.D., A.M.L. provided and supported the large-scale multielectrode array system. G.D.F. and E.J.C. wrote the manuscript. To resolve the fine structure of RFs, stimuli with 10-fold smaller pixels (5×5 μm) were used. At this resolution, RFs did not conform to the smooth Gaussian approximation used in Fig. 1a (center) and in previous studies 18 . Instead, each RF was composed of punctate islands of light sensitivity (Fig. 1a, flanking). The separation between islands was roughly equal to the spacing of the cone lattice, consistent with the idea that each island reflected the contribution of a single cone 10 , 19 . To test this hypothesis, locations of islands were compared to photographs of cone outer segments labeled with peanut agglutinin; a close alignment was observed (Fig. 1b, see Supplementary Methods). HHS Public AccessTh...
A multielectrode array system has been developed to study how the retina processes and encodes visual images. This system can simultaneously record the extracellular electrical activity from hundreds of retinal output neurons as a dynamic visual image is focused on the input neurons. The retinal output signals detected can be correlated with the visual input to study the neural code used by the eye to send information about the visual world to the brain. The system consists of the following components: 1) a 32 16 rectangular array of 512 planar microelectrodes with a sensitive area of 1.7 mm2 ; the electrode spacing is 60 m and the electrode diameter is 5 m (hexagonal arrays with 519 electrodes are under development); 2) eight 64-channel custom-designed integrated circuits to platinize the electrodes and ac couple the signals; 3) eight 64-channel integrated circuits to amplify, band-pass filter, and analog multiplex the signals; 4) a data acquisition system; and 5) data processing software. This paper will describe the design of the system, the experimental and data analysis techniques, and some first results with live retina. The system is based on techniques and expertise acquired in the development of silicon microstrip detectors for high-energy physics experiments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.