Summary Phenotypic variation plays an important role in successful plant invasions. The spread of invasive species over large geographic ranges may be facilitated if plants can match their phenotype to local abiotic conditions. Spartina alterniflora, native to the United States, was introduced into China in 1979 and has spread over 19ᵒ of latitude along the eastern coast of China. We studied patterns in vegetative growth and sexual reproduction of S. alterniflora at 22 sites at 11 geographic locations over a latitudinal gradient of ˜2000 km from Tanggu (39.05°N, high latitude) to Leizhou (20.90°N, low latitude) in China. We further evaluated the basis of phenotypic differences by growing plants from across the range in a common garden for 2 growing seasons. We found distinct latitudinal clines in plant height, shoot density and sexual reproduction across latitude. Some traits exhibited linear relationships with latitude; others exhibited hump‐shaped relationships. We identified correlations between plant traits and abiotic conditions such as mean annual temperature, growing degree days, tidal range and soil nitrogen content. However, geographic variation in all but one trait disappeared in the common garden, indicating that variation largely due to phenotypic plasticity. Only a slight tendency for latitudinal variation in seed set persisted for 2 years in the common garden, suggesting that plants may be evolving genetic clines for this trait. Synthesis. The rapid spread of Spartina alterniflora (S. alterniflora) in China has probably been facilitated by phenotypic plasticity in growth and reproductive traits. We found little evidence for the evolution of genetic clines in China, even though these exist for some traits in the native range. The considerable variation among clones, within provenances, that persisted in the common garden suggests a potential for the evolution of geographic clines in the future. Low fecundity of low‐latitude S. alterniflora populations in China might result in a slower spread at low latitudes, but S. alterniflora is likely to continue to spread rapidly at high latitudes in China and into the Korean peninsula.
Summary Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven‐fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.