Zinc is required for the activity of > 300 enzymes, covering all six classes of enzymes. Zinc binding sites in proteins are often distorted tetrahedral or trigonal bipyramidal geometry, made up of the sulfur of cysteine, the nitrogen of histidine or the oxygen of aspartate and glutamate, or a combination. Zinc in proteins can either participate directly in chemical catalysis or be important for maintaining protein structure and stability. In all catalytic sites, the zinc ion functions as a Lewis acid. Researchers in our laboratory are dissecting the determinants of molecular recognition and catalysis in the zinc-binding site of carbonic anhydrase. These studies demonstrate that the chemical nature of the direct ligands and the structure of the surrounding hydrogen bond network are crucial for both the activity of carbonic anhydrase and the metal ion affinity of the zinc-binding site. An understanding of naturally occurring zinc-binding sites will aid in creating de novo zinc-binding proteins and in designing new metal sites in existing proteins for novel purposes such as to serve as metal ion biosensors.
The yeast Zap1 transcription factor controls the expression of genes involved in zinc accumulation and storage. Zap1 is active in zinc-limited cells and repressed in replete cells. Zap1 has two activation domains, AD1 and AD2, which are both regulated by zinc. AD2 function was mapped to a region containing two Cys2His2 zinc fingers, ZF1 and ZF2, that are not involved in DNA binding. More detailed mapping placed AD2 almost precisely within the endpoints of ZF2, suggesting a role for these fingers in regulating activation domain function. Consistent with this hypothesis, ZF1 and ZF2 bound zinc in vitro but less stably than did zinc fingers involved in DNA binding. Furthermore, mutations predicted to disrupt zinc binding to ZF1 and/or ZF2 rendered AD2 constitutively active. Our results also indicate that the repressed form of AD2 requires an intramolecular interaction between ZF1 and ZF2. These studies suggest that these zinc fingers play an unprecedented role as zinc sensors to control activation domain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.