The hypothesis that exercise-induced coronary vasodilation is a result of sympathetic activation of coronary smooth muscle beta-adrenoceptors was tested. Ten dogs were chronically instrumented with a flow transducer on the circumflex coronary artery and catheters in the aorta and coronary sinus. During treadmill exercise, coronary venous oxygen tension decreased with increasing myocardial oxygen consumption, indicating an imperfect match between myocardial blood flow and oxygen consumption. This match was improved after alpha-adrenoceptor blockade with phentolamine but was significantly worse than control after alpha + beta-adrenoceptor blockade with phentolamine plus propranolol. The response after alpha-adrenoceptor blockade included local metabolic vasodilation plus a beta-adrenoceptor vasodilator component, whereas the response after alpha + beta-adrenoceptor blockade contained only the local metabolic vasodilator component. The large difference in coronary venous oxygen tensions during exercise between alpha-adrenoceptor blockade and alpha + beta-adrenoceptor blockade indicates that there is significant feedforward beta-adrenoceptor coronary vasodilation in exercising dogs. Coronary venous and estimated myocardial interstitial adenosine concentrations did not increase during exercise before or after alpha + beta-adrenoceptor blockade, indicating that adenosine levels did not increase to compensate for the loss of feedforward beta-adrenoceptor-mediated coronary vasodilation. These results indicate a meaningful role for feedforward beta-receptor-mediated sympathetic coronary vasodilation during exercise.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically Important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and Ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the medlator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K+ATP channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward ß-adrenoceptor coronary vasodilation that accounts for -25% of coronary vasodilation observed during exercise. There is also a feed-forward α-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.
Background-Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Methods and Results-Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N -nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased Ϸ3.7-fold, and coronary blood flow increased Ϸ3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. Conclusions-NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.
The main purpose of this study was to determine the interstitial oxygen tension at which aerobic metabolism becomes limited (critical PO(2)) in vivo in resting skeletal muscle. Using an intravital microscope system, we determined the interstitial oxygen tension at 20-micrometer-diameter tissue sites in rat spinotrapezius muscle from the phosphorescence lifetime decay of a metalloporphyrin probe during a 1-min stoppage of muscle blood flow. In paired experiments NADH fluorescence was measured at the same sites during flow stoppage. NADH fluorescence rose significantly above control when interstitial PO(2) fell to 2.9 +/- 0.5 mmHg (n = 13) and was not significantly different (2.4 +/- 0.5 mmHg) when the two variables were first averaged for all sites and then compared. Similar values were obtained using the abrupt change in rate of PO(2) decline as the criterion for critical PO(2). With a similar protocol, we determined that NADH rose significantly at a tissue site centered 30 micrometer from a collecting venule when intravascular PO(2) fell to 7.2 +/- 1.5 mmHg. The values for critical interstitial and critical intravascular PO(2) are well below those reported during free blood flow in this and in other muscle preparations, suggesting that oxygen delivery is regulated at levels well above the minimum required for oxidative metabolism. The extracellular critical PO(2) found in this study is slightly greater than previously found in vitro, possibly due to differing local conditions rather than a difference in metabolic set point for the mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.