Distinct from inert bulk gold, nanoparticulate gold has been found to possess remarkable catalytic activity towards oxidation reactions. The catalytic performance of nanoparticulate gold strongly depends on size and support, and catalytic activity usually cannot be observed at characteristic sizes larger than 5 nm. Interestingly, significant catalytic activity can be retained in dealloyed nanoporous gold (NPG) even when its feature lengths are larger than 30 nm. Here we report atomic insights of the NPG catalysis, characterized by spherical-aberration-corrected transmission electron microscopy (TEM) and environmental TEM. A high density of atomic steps and kinks is observed on the curved surfaces of NPG, comparable to 3-5 nm nanoparticles, which are stabilized by hyperboloid-like gold ligaments. In situ TEM observations provide compelling evidence that the surface defects are active sites for the catalytic oxidation of CO and residual Ag stabilizes the atomic steps by suppressing {111} faceting kinetics.
By combining electrical, physical, and transport/atomistic modeling results, this study identifies critical conductive filament (CF) features controlling TiN/HfO2/TiN resistive memory (RRAM) operations. The leakage current through the dielectric is found to be supported by the oxygen vacancies, which tend to segregate at hafnia grain boundaries. We simulate the evolution of a current path during the forming operation employing the multiphonon trap-assisted tunneling (TAT) electron transport model. The forming process is analyzed within the concept of dielectric breakdown, which exhibits much shorter characteristic times than the electroforming process conventionally employed to describe the formation of the conductive filament. The resulting conductive filament is calculated to produce a non-uniform temperature profile along its length during the reset operation, promoting preferential oxidation of the filament tip. A thin dielectric barrier resulting from the CF tip oxidation is found to control filament resistance in the high resistive state. Field-driven dielectric breakdown of this barrier during the set operation restores the filament to its initial low resistive state. These findings point to the critical importance of controlling the filament cross section during forming to achieve low power RRAM cell switching.
The ability to resolve spatially and identify chemically atoms in defects would greatly advance our understanding of the correlation between structure and property in materials. This is particularly important in polycrystalline materials, in which the grain boundaries have profound implications for the properties and applications of the final material. However, such atomic resolution is still extremely difficult to achieve, partly because grain boundaries are effective sinks for atomic defects and impurities, which may drive structural transformation of grain boundaries and consequently modify material properties. Regardless of the origin of these sinks, the interplay between defects and grain boundaries complicates our efforts to pinpoint the exact sites and chemistries of the entities present in the defective regions, thereby limiting our understanding of how specific defects mediate property changes. Here we show that the combination of advanced electron microscopy, spectroscopy and first-principles calculations can provide three-dimensional images of complex, multicomponent grain boundaries with both atomic resolution and chemical sensitivity. The high resolution of these techniques allows us to demonstrate that even for magnesium oxide, which has a simple rock-salt structure, grain boundaries can accommodate complex ordered defect superstructures that induce significant electron trapping in the bandgap of the oxide. These results offer insights into interactions between defects and grain boundaries in ceramics and demonstrate that atomic-scale analysis of complex multicomponent structures in materials is now becoming possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.