Heme is a ligand for the human nuclear receptors (NR) REV-ERBα and REV-ERBβ, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 Å crystal structure of the REV-ERBβ LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBβ complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.
One of the largest groups of metazoan transcription factors (TFs), the Nuclear Receptor superfamily, regulates genes required for virtually all aspects of development, reproduction and metabolism. Together, these master regulators can be thought of as a fundamental operating system for metazoan life. Their most distinguishing feature is a structurally conserved domain that acts as a switch, powered by the presence of small diffusible ligands. This ligand-responsive regulation has allowed the Nuclear Receptors to help their hosts adapt to a wide variety of physiological niches and roles, making them one of the most evolutionarily successful TF families. Originally discovered as receptors for steroid hormones, the Nuclear Receptor field has grown to encompass much more than traditional endocrinology. For example, recent work has highlighted the role of Nuclear Receptors as major regulators of metabolism and biological clocks. By monitoring endogenous metabolites and absorbed xenobiotics, these receptors also coordinate rapid, system-wide responses to changing metabolic and environmental states. While many new Nuclear Receptor ligands have been discovered in the past couple of decades, approximately half of the 48 human receptors are still orphans, with a significantly higher percentage of orphans in other organisms. The discovery of new ligands has led to the elucidation of new regulatory mechanisms, target genes, pathways and functions. This review will highlight both the common as well as newly emerging traits and functions that characterize this particularly unique and important TF family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.