T he phosphoinositide-3-kinase (PI3K) family of lipid kinases is involved in a diverse set of cellular functions, including cell growth, proliferation, motility, differentiation, glucose transport, survival, intracellular trafficking, and membrane ruffling. 1 PI3K's can be categorized into class I, II, or III, depending on their subunit structure, regulation, and substrate selectivity. 2 Class IA PI3K's are activated by receptor tyrosine kinases and consist of a regulatory subunit (p85) and a catalytic subunit (p110). There are three catalytic isoforms: p110R, β, and δ. A single class IB PI3K, activated by GPCRs, consists of only one member: a p110γ catalytic subunit and a p101 regulatory subunit. The primary in vivo substrate of the class I PI3K's is phosphatidylinositol (4,5) diphosphate (PtdIns(4,5)P2), which upon phosphorylation at the 3-position of the inositol ring to form phosphatidylinositol triphosphate (3,4,5)P3 (PIP3) serves as a second messenger by activating a series of downstream effectors that mediate the cellular functions mentioned above. The PI3K isoforms have different distributions and share similar cellular functions, which are context dependent. In particular, p110R pathway deregulation has been demonstrated in ovarian, breast, colon, and brain cancers. 3,4 Inhibitors of PI3KR represent an intriguing therapeutic modality for these indications, and as such, there is much interest in generating suitable molecules to test this hypothesis in the clinic. 5À10 We have previously reported on a series of 6-hydroxyphenyl-2-morpholino pyrimidines, 11 as potent pan class I PI3K inhibitors that exhibit high selectivity toward protein kinases (serine/threonine and tyrosine kinases). We have further reported on non-phenol containing heterocyclic, morpholino pyrimidines 12 such as compound 1 which demonstrate in vivo PI3K pathway modulation and modest tumor growth inhibition. Described herein are our efforts to identify potent morpholino pyrimidinyl inhibitors of class I PI3Ks that exhibit potency and pharmacokinetic properties which allow for maximal pathway modulation in vivo and have druglike properties suitable for clinical development. These efforts culminated in the identification of 15, NVP-BKM120.Aminopyrimidine 1 and analogues such as 3 (Figure 1) exhibit low or sub-nanomolar biochemical potency and sub-micromolar cellular potency against PI3KR. Even with high rodent CL values, such analogues can demonstrate PI3K pathway modulation in mouse xenograft models. 12 During our exploration of the C 6 position, it was noted that C 6 aminopyridine analogue 4, while being less potent than 3 against PI3KR (>10Â potency loss), exhibited a markedly reduced (>9Â) rat CL value, increased %F, and increased oral AUC. Thus, superior pharmacokinetic properties were achievable within this scaffold and the challenge remaining was to retain this kind of pharmacokinetic profile while optimizing all the other attributes (potency, solubility, permeability, safety) necessary for advancement. To address this challenge, ...
Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties. A series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines, which potently inhibit PI3K, were discovered. Within this series a compound, 17, was identified with suitable pharmacokinetic (PK) properties, which allowed for the establishment of a PI3K PK/pharmacodynamic-efficacy relationship as determined by in vivo inhibition of AKT Ser473 phosphorylation and tumor growth inhibition in a mouse A2780 tumor xenograft model.KEYWORDS phosphoinositide 3-kinase alpha, PI3K/AKT pathway T he phospoinositide-3-kinase (PI3K) family of lipid kinases is involved in a diverse set of cellular functions, including cell growth, proliferation, motility, differentiation, glucose transport, survival intracellular trafficking, and membrane ruffling. 1 PI3Ks can be categorized in class I, II, or III, depending on their subunit structure, regulation, and substrate selectivity. 2 Class IA PI3Ks are activated by receptor tyrosine kinases and consist of a regulatory subunit (p85) and a catalytic subunit (p110). There are three catalytic isoforms: p110 R, β, and δ. A single class IB PI3K, activated by G protein-coupled receptor, consists of only one member: a p110 γ catalytic subunit and a p101 regulatory subunit. The primary in vivo substrate of the class I PI3Ks is phosphatidylinositol (4,5) diphosphate, which, upon phosphorylation at the 3-position of the inositol ring to form phosphatidylinositol triphosphate (3,4,5)P3, serves as a second messenger by activating a series of downstream effectors that mediate the cellular functions mentioned above. The PI3K isoforms have different distributions and share similar cellular functions, which are context dependent. In particular, p110R pathway deregulation has been demonstrated in ovarian, breast, colon, and brain cancers. 3,4 Inhibitors of PI3KR represent an intriguing therapeutic modality for these indications, and as such, there is much interest in generating suitable molecules to test this hypothesis in the clinic. [5][6][7][8][9] We have reported phenolic mopholino pyrimidines, 10 such as compound 1 (Figure 1), as potent pan class I PI3K inhibitors that exhibit high selectivity toward other serine/threonine as well as tyrosine kinases. While exhibiting potent in vitro properties, the in vivo potential of such compounds may be limited due to the presence of the phenol moiety. Described herein are our efforts to identify potent morpholino pyrimidinyl inhibitors of PI3K that do not require a phenol group and exhibit PK properties suitable for achieving in vivo target modulation and efficacy.The importance of the...
RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.
In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 ICs in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.