In contrast to endurance training, little research has been carried out to investigate the effects of short (< 10 s) sprint training on performance, muscle metabolism and fibre types. Nine fit male subjects performed a mean of 16 outdoor sprint running training sessions over 6 weeks. Distances sprinted were 30-80 m at 90-100% maximum speed and between 20 and 40 sprints were performed in each session. Endurance (maximal oxygen consumption; VO2max), sprint (10 m and 40 m times), sustained sprint (supramaximal treadmill run) and repeated sprint (6 x 40 m sprints, 24 s recovery between each) performance tests were performed before and after training. Muscle biopsy samples (vastus lateralis) were also taken to examine changes in metabolites, enzyme activities and fibre types. After training, significant improvements were seen in 40 m time (P < 0.01), supramaximal treadmill run time (P < 0.05), repeated sprint performance (P < 0.05) and VO2max (P < 0.01). Resting muscle concentrations of ATP and phosphocreatine did not change. Phosphorylase activity increased (P < 0.025), citrate synthase activity decreased (P < 0.01), but no significant changes were recorded in myokinase and phosphofructokinase activities. The proportion of type II muscle fibres increased significantly (P < 0.05). These results demonstrate that 6 weeks of short sprint training can improve endurance, sprint and repeated sprint ability in fit subjects. Increases in the proportion of type II muscle fibres are also possible with this type of training.
We developed a method to investigate feed-forward and feedback movement control during a weight bearing visuomotor knee tracking task. We hypothesized that a systematic increase in speed and resistance would show a linear decrease in movement accuracy, while unexpected perturbations would induce a velocity-dependent decrease in movement accuracy. We determined the effects of manipulating the speed, resistance, and unexpected events on error during a functional weight bearing task. Our long term objective is to benchmark neuromuscular control performance across various groups based on age, injury, disease, rehabilitation status, and/or training. Twenty-six healthy adults between the ages of 19–45 participated in this study. The study involved a single session using a custom designed apparatus to perform a single limb weight bearing task under nine testing conditions: three movement speeds (0.2, 0.4, and 0.6 Hz) in combination with three levels of brake resistance (5%, 10%, and 15% of individual’s body weight). Individuals were to perform the task according to a target with a fixed trajectory across all speeds, corresponding to a ~ 0 (extension) to 30 degrees (flexion) of knee motion. An increase in error occurred with speed (p<0.0001, effect size (eta2): η2=0.50) and resistance (p<0.0001, η2=0.01). Likewise, during unexpected perturbations, the ratio of perturbed/non-perturbed error increased with each increment in velocity (p<.0014, η2=0.08), and resistance (p<.0001, η2=0.11). The hierarchical framework of these measurements offers a standardized functional weight bearing strategy to assess impaired neuro-muscular control and/or test the efficacy of therapeutic rehabilitation interventions designed to influence neuromuscular control of the knee.
Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimulation, and 2) ascertain which of three stimulation strategies best maintains soleus torque during repetitive stimulation. When torque declined by 10%, the FDBCK protocol modulated the base stimulation frequency in three ways: by a fixed increase, by a paired pulse (doublet) at the beginning of the stimulation train, and by a fixed decrease. The stimulation strategy that most effectively restored torque continued for successive contractions. This process repeated each time torque declined by 10%. In fresh muscle, FDBCK stimulation offered minimal advantage in maintaining peak torque or mean torque over CONST stimulation. As long-duration fatigue developed in subsequent bouts, FDBCK stimulation became most effective ( approximately 40% higher final normalized torque than CONST). The high-frequency strategy was selected approximately 90% of the time, supporting that excitation-contraction coupling compromise and not neuromuscular transmission failure contributed to fatigue of paralyzed muscle. Ideal stimulation strategies may vary according to the site of fatigue; this stimulation approach offered the advantage of online modulation of stimulation strategies in response to fatigue conditions. Based on stress-adaptation principles, FDBCK-controlled stimulation may enhance training effects in chronically paralyzed muscle.
This study examined motor skill learning using a weight-bearing and cognitive-motor dual-task that incorporated unexpected perturbations and measurements of cognitive function. Forty young and 24 older adults performed a single-limb weight bearing task with novel speed, resistance, and cognitive dual task conditions to assess motor skill acquisition, retention and transfer. Subjects performed a cognitive dual task: summing letters in one color/orientation (simple) or two colors/orientations (complex). Increased cognitive load diminished the rate of skill acquisition, decreased transfer to new conditions, and increased error rate during an unexpected perturbation; however, young adults had a dual-task benefit from cognitive load. Executive function predicted 80% of the variability in dual-task performance. Although initial learning of a weight-bearing cognitive-motor dual-task was poor, longer-term goals of improved dual-task effect and retention emerged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.