We study the effects of extra spacetime dimensions at intermediate mass scales, as expected in string theories with large-radius compactifications, and focus on the gauge and Yukawa couplings within the Minimal Supersymmetric Standard Model. We find that extra spacetime dimensions naturally lead to the appearance of grand unified theories at scales substantially below the usual GUT scale. Furthermore, we show that extra spacetime dimensions provide a natural mechanism for explaining the fermion mass hierarchy by permitting the Yukawa couplings to receive power-law corrections. We also discuss how proton-decay constraints may be addressed in this scenario, and suggest that proton-decay amplitudes may be exactly cancelled to all orders in perturbation theory as a result of new Kaluza-Klein selection rules corresponding to the extra
One of the drawbacks of conventional grand unification scenarios has been that the unification scale is too high to permit direct exploration. In this paper, we show that the unification scale can be significantly lowered (perhaps even to the TeV scale) through the appearance of extra spacetime dimensions. Such extra dimensions are a natural consequence of string theories with largeradius compactifications. We show that extra spacetime dimensions naturally lead to gauge coupling unification at intermediate mass scales, and moreover may provide a natural mechanism for explaining the fermion mass hierarchy by permitting the fermion masses to evolve with a power-law dependence on the mass scale. We also show that proton-decay constraints may be satisfied in our scenario due to the higher-dimensional cancellation of proton-decay amplitudes to all orders in perturbation theory. Finally, we extend these results by considering theories without supersymmetry; experimental collider signatures; and embeddings into string theory. The latter also enables us to develop several novel methods of explaining the fermion mass hierarchy via D-branes. Our results therefore suggest a new approach towards understanding the physics of grand unification as well as the phenomenology of large-radius string compact-
We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the µm scale up to the Big Bang Nucleosynthesis limit of ∼10 7 m. Neutral LLPs with lifetimes above ∼ 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
We study some of the novel effects that arise when the QCD axion is placed in the ''bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, a feature which is not possible in four dimensions and which may contribute to axion invisibility. Second, we discuss the new phenomenon of laboratory axion oscillations ͑analogous to neutrino oscillations͒, and show that these oscillations cause laboratory axions to ''decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an ''invisible'' axion within the context of higher-dimensional theories with large-radius compactifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.