The focus of this paper was to investigate the effects of microvoid content in quartz/BMI laminates on both short and long-term moisture absorption dynamics. The moisture absorption characteristics for the laminates were experimentally obtained by water immersion tests at 25°C of three-ply quartz/BMI samples that contain voids, ranging from 8.6% to 13.7% by volume. The void levels were obtained by conditioning the prepreg at different moisture levels for 48 hours in an environmental chamber before curing in a hot press. The curing process was carried out at 69 kPa, which leads to a more uniform fiber volume fraction for the laminates. Having a constant fiber volume fraction ensures the same amount of fiber-matrix interface present in all the test samples, therefore eliminating the effect of fiber-matrix interface as an experimental variable. It is shown that the presence of microvoids leads to an increased non-Fickian absorption behavior. Hence, the anomalous, non-Fickian absorption parameters are obtained by using a one-dimensional absorption model that accounts for both bound and unbound free water within the laminate. It is shown that the microvoids act as storage sites for moisture which can be described by the one-dimensional, non-Fickian absorption model. Finally, possible relationships between the four absorption model parameters and the process-induced microvoid content are discussed.
Wind energy is one of the fastest growing sectors of renewable energy technologies. Micro-scale wind turbines are becoming increasingly more popular as individuals seek more innovative and efficient ways of reducing their energy demand. However, even with more efficient wind energy harvesting devices, it is not uncommon for the anticipated energy harvesting potential for a wind turbine to be vastly different from the actual energy generation capability for a site. This paper will introduce the problems associated with accurately predicting the energy generation potential of wind energy harvesting systems considering several power loss factors. The focus of this paper is on the use of commonly available engineering tools and simulations to evaluate obstructions on the implementation site and energy harvesting technologies in order to maximize the energy generation potential.
The issues of energy generation prediction accuracy will be addressed by incorporating high-resolution weather data and computer simulations into a predictive model. Additionally, several correction factors and design guidelines for the successful implementation of micro-scale wind turbines will be introduced and discussed. A multi-step approach is introduced to collect weather data, generate revised energy generation potential models for various land regions, account for common site obstructions through the use of correction factors, and formulate a final set of recommendations for the wind turbine implementation site. A set of design guidelines are also developed to assist in turbine placement for specific site locations. The guidelines are based on the revised energy generation prediction model, wind speed correction factors for common site obstructions, orientation and placement of the wind turbine, and other factors. Verification of the guidelines has been performed through Computational Fluid Dynamics simulation. The design approach and guidelines are examined and results presented for one case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.