Methionine (Met) is an essential amino acid with commercial value in animal feed, human nutrition, and as a chemical precursor. Microbial production of Met has seen intensive investigation towards a more sustainable alternative to the chemical synthesis that currently meets the global Met demand. Indeed, efficient Met biosynthesis has been achieved in genetically modified bacteria that harbor engineered enzymes and streamlined metabolic pathways. Very recently, the export of Met as the final step during its fermentative production has been studied and optimized, primarily through identification and expression of microbial Met efflux transporters. In this mini-review, we summarize the current knowledge on four families of Met export and import transporters that have been harnessed for the production of Met and other valuable biomolecules. These families are discussed with respect to their function, gene regulation, and biotechnological applications. We cover methods for identification and characterization of Met transporters as the basis for the further engineering of these proteins and for exploration of other solute carrier families. The available arsenal of Met transporters from different species and protein families provides blueprints not only for fermentative production but also synthetic biology systems, such as molecular sensors and cell-cell communication systems. Key points • Sustainable production of methionine (Met) using microbes is actively explored. • Met transporters of four families increase production yield and specificity. • Further applications include other biosynthetic pathways and synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.