The design of appropriate gene delivery systems is essential for the successful application of gene therapy to clinical medicine. Cationic lipid-mediated delivery is a viable alternative to viral vectormediated gene delivery in applications where transient gene expression is desirable. However, cationic lipid-mediated delivery of DNA to post-mitotic cells such as neurons is often reported to be of low efficiency, due to the presumed inability of the DNA to translocate to the nucleus. Lipidmediated delivery of RNA is an attractive alternative to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary. Here we report a comparative investigation of cationic lipid-mediated delivery of RNA versus DNA vectors encoding the reporter gene green fluorescent protein (GFP) in Chinese Hamster Ovary (CHO) and NIH3T3 cells following chemical inhibition of proliferation, and in primary mixed neuronal cell cultures. Using optimized formulations and transfection procedures, we assess gene expression by flow cytometry to specifically address some of the advantages and disadvantages of lipid-mediated RNA and DNA gene transfer. Despite inhibition of cell proliferation, over 45% of CHO cells express GFP after lipid-mediated transfection with RNA vectors. Transfection efficiency of DNA encoding GFP in proliferation-inhibited CHO cells was less than 5%. Detectable expression after RNA transfection occurs at least 3 hours earlier than after DNA transfection, but DNA transfection eventually produces a mean level of per cell GFP expression (as assayed by flow cytometry) that is higher than after RNA transfection. Transfection of proliferation-inhibited NIH3T3 cells and primary mixed neuronal cultures produced similar results, with RNA encoded GFP expression in 2 to 4 times the number of cells as after DNA encoded GFP expression. These results demonstrate the increased efficiency of RNA transfection relative to DNA transfection in non-dividing cells. We used firefly luciferase encoded by RNA and DNA vectors to investigate the time course of gene expression after delivery of RNA or DNA to primary neuronal cortical cells. Delivery of mRNA resulted in rapid onset (within 1 hour) of luciferase expression after transfection, a peak in expression 5-7 hours after transfection, and a return to baseline within 12 hours after transfection. After DNA delivery significant luciferase activity did not appear until 7 hours after transfection, but peak luciferase expression was always at least one order of magnitude higher than after RNA delivery. The peak expression after luciferaseexpressing DNA delivery occurred 36-48 hours after transfection and remained at a significant level for at least one week before dropping to baseline. This observation is consistent with our in-vivo Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will u...
We previously showed that a vector:lipid delivery system, comprised of a plasmid DNA vector and cationic lipid (lipoplex), when injected into the cerebrospinal fluid (CSF) of rats can deliver reporter genes in vivo efficiently and with widespread expression to the Central Nervous System (CNS). To further characterize this delivery system, we now present experiments that demonstrate the in vivo time-to-peak expression of the reporter gene, firefly luciferase. We infused a formulated lipoplex containing the lipid MLRI [dissymmetric myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor–substituted compound formed from the tetraalkylammonium glycerol–based DORI] and pNDluc, a luciferase vector, into CSF in the cisterna magna (CM) of the rat. Luciferase activity was followed over time by bioluminescence imaging after injection of luciferin. Our results show that luciferase activity in the CNS of rats is widespread, peaks 72 hours after injection into CM and can be detected in vivo for at least 7–10 days after peak expression. We further show that in contrast to injection into CSF, enzyme activity is not widely distributed after injection of the vector into brain parenchyma, emphasizing the importance of CSF delivery to achieve widespread vector distribution. Finally, we confirm the distribution of firefly luciferase in brain by immunohistochemical staining from an animal that was euthanized at the peak of enzyme expression.
These experiments do not show any sodium channel blocking effect of QYNAD. The conclusion that QYNAD contributes to the pathophysiology of inflammatory neurologic disorders by blocking voltage-gated sodium channels should therefore be viewed with caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.