Midbrain periaqueductal grey (PAG) provokes the defense reaction when stimulated. The present study was conducted to determine whether, and how, the PAG produces baroreflex inhibition, a feature characterizing the hypothalamic defense reaction. In chloralose-urethane anaesthetized rats, baroreflex vagal bradycardia and baroreflex hypotension were provoked by aortic depressor nerve stimulation. When the PAG was electrically stimulated baroreflex vagal bradycardia was remarkably suppressed; suppression of baroreflex hypotension was observed following bilateral vagotomy. In contrast, chemical stimulation of the PAG by D,L-homocysteic acid microinjection markedly suppressed baroreflex vagal bradycardia but only minimally suppressed baroreflex hypotension. These findings suggest that whereas overall PAG stimulation inhibits not only cardiac but also vascular components of baroreflexes, inhibition of the latter component either depends largely on activation of passing fibers or requires recruitment of a larger number of PAG cell bodies. PAG inhibition of baroreflex vagal bradycardia was not affected following spinal cord transection at C1, indicating that the inhibition was exclusively central in origin and not due to peripheral, prejunctional inhibition of vagal acetylcholine release by increased cardiac sympathetic nerve activities. The PAG inhibition of baroreflexes was greatly attenuated following electrolytic as well as chemical destruction of the parabrachial region. On the other hand, when the PAG was extensively lesioned, baroreflex inhibition produced by hypothalamic defense area stimulation was markedly diminished. PAG excitation thus causes powerful inhibition of arterial baroreflexes which is mediated by the parabrachial region; the PAG also mediates a major fraction of hypothalamic inhibition of the baroreflexes.
Arterial baroreflexes are known to be reset during activation of defense area and somatosensory receptors-afferents. Here we report that viscerosensory activation also inhibits the baroreflexes. In chloralose-urethan-anesthetized, succinylcholine-immobilized, and artificially ventilated rats, the aortic depressor nerve was electrically stimulated while propranolol was continuously infused to elicit baroreflex hypotension (BH) and baroreflex vagal bradycardia (BVB). Hydraulic distension of the stomach with warm 0.9% NaCl solution was found to suppress BVB and BH, with a threshold intraluminal pressure at times less than 5mmHg. The gastric distension also suppressed BH in atropinized rats, suggesting that inhibition involved not only cardiac but also vascular components of baroreflexes. Bilateral splanchnectomy largely attenuated the inhibition, whereas bilateral subdiaphragmatic vagotomy had little effect. Low- as well as high-frequency stimulation of the splanchnic nerve strongly suppressed both BVB and BH, whereas only low-frequency stimulation of the subdiaphragmatic vagus inhibited baroreflexes to a slight degree. In conclusion, gastric distension suppresses BVB and BH, and this inhibition is largely mediated by afferent fibers in the splanchnic nerve. Such baroreflex inhibition may be a general consequence of mechanoreceptor activation of any visceral hollow organs because the jejunum, esophagus, and urinary bladder were all found to suppress arterial baroreflexes when distended.
Somatosensory and forebrain mechanisms inhibiting arterial baroreflexes were investigated in chloralose-urethane anesthetized and artificially ventilated rats. Electrical stimulation of the sciatic nerve (ScN) and the hypothalamic pressor area (HP) suppressed baroreflex vagal bradycardia (BVB) and hypotension provoked by electrical stimulation of the aortic depressor nerve (ADN). Suppression of BVB was more marked, but inhibitory potencies of ScN and HP were not different. These two inhibitions were considered to have a functional implication in common, since both were accompanied by increase in hindlimb vascular conductance. A variety of experiments were conducted to localize the target site of ScN and HP inhibitions of BVB. Either ScN or HP stimulations was without effect on antidromic compound spike potentials along ADN evoked by microstimulation of the nucleus tractus solitarius (NTS), precluding the possibility of these inhibitions being presynaptic. Both ScN and HP stimulation suppressed ADN-induced field potentials in the NA region which provoked vagal bradycardia upon microstimulation, but failed to affect ADN-induced responses, either field or unitary, in the NTS region. Antidromic unitary responses in the NA region to vagus cardiac branch stimulation were suppressed by ScN and HP stimulations in NTS-lesioned rats. Intracisternal bicuculline, a GABA antagonist, was found to abolish both ScN and HP inhibitions of BVB, while intracisternal muscimol, a GABA agonist, eliminated bradycardia. These findings suggest that somatosensory and forebrain inhibition of BVB occur principally at the preganglionic cell level and are probably mediated by a GABAergic mechanism.
Sensory receptors, afferent fibers, and spinal ascending pathways involved in somatosensory inhibition of baroreflex vagal bradycardia (BVB) were studied in chloralose-urethan-anesthetized rats. BVB was induced by electrical stimulation of the aortic depressor nerve (ADN). Among mechanical and thermal stimuli applied on a hindlimb, hot water (55 degrees C) immersion was most effective to inhibit BVB. Static hindlimb muscle contraction by ventral root stimulation also produced BVB inhibition that was abolished by muscle relaxation. These findings suggest that thermal nociceptors and muscle receptors, probably chemoreceptors, trigger BVB inhibition when activated. Furthermore, afferent fiber groups responsible for BVB inhibition due to sciatic nerve (ScN) or sural nerve (SU) stimulation were determined. BVB was largely inhibited by activation of A delta-fibers of the ScN or SU, but C-fiber contribution to BVB inhibition was also ascertained by means of selective C-fiber activation. Finally, courses of spinal pathways mediating ScN inhibition of BVB were localized as follows. First, ADN-vagal baroreflex arc of one side was interrupted by unilateral vagotomy. Then ScN inhibition of BVB provoked by the remaining reflex arc was analyzed after spinal cord hemisection at C1 and subsequent lesioning of the cord on the nonsectioned side. Regardless of whether the spinal cord was hemisectioned on any side with respect to the target reflex arc, stimulation of the ScN of either side still inhibited BVB, unless the lateral funiculus of nonsectioned side was extensively lesioned. In conclusion, the spinal BVB-inhibitory pathways are multifold, projecting to bilateral baroreflex vagal centers by crossing the midline at spinal or/and medullary levels.
In stressful conditions, baroreflex vagal bradycardia (BVB) is often suppressed while blood pressure is increased. To address the role of the rostral ventrolateral medulla (RVL), a principal source of sympathetic tone, in inhibition of BVB, we microinjected DL-homocysteic acid (DLH, 6 nmol) into the RVL of chloralose-urethan-anesthetized, sinoaortic-denervated rats to examine the effect on BVB. The BVB was provoked by electrical stimulation of the aortic depressor nerve ipsilateral to the injection sites. DLH microinjection was found to suppress BVB while increasing blood pressure. The inhibition of BVB was observed even during the early phase in which DLH transiently suppressed central inspiratory activity. The inhibition was not affected either by upper spinal cord transection or suprapontine decerebration. Similar results were obtained by microinjection of bicuculline methiodide (160 pmol), a GABA antagonist, into the RVL of carotid sinus nerve-preserved rats due to withdrawal of a tonic GABA-mediated, inhibitory influence including the input from arterial baroreceptors. In conclusion, activation of the RVL inhibits BVB at brain stem level independently of central inspiratory drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.