We analyzed the size-dependent volatility of nanoparticles in a diameter range of 30-70 nm in diesel exhaust emissions. The test system included a medium-duty diesel truck on a chassis dynamometer, a single-stage dilution tunnel, a tandem differential mobility analyzer (TDMA) equipped with an electric furnace, and a condensation particle counter. The size shifts of monodispersed diesel nanoparticles under changing furnace temperatures were measured by TDMA in the gas phase. Together with the reduction of average particle size and volume, we observed the development of bimodal size distributions resulting from the separation between semivolatile and nonvolatile species as the furnace temperature was increased. While 91-98% of the particles were found to be semivolatile species by total volume during the idling engine condition, only 6-9% were semivolatile during the one-half engine load condition. We also found that smaller particles contained a larger fraction of semivolatile species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.