Glutamate (Glu) exhibits a pH and concentration dependent chemical exchange saturation transfer effect (CEST) between its -amine group and bulk water, here termed GluCEST. GluCEST asymmetry is observed at ~3 parts per million downfield from bulk water. Following middle cerebral artery occlusion in the rat brain, an approximately 100% elevation of GluCEST in the ipsilateral side compared to the contralateral side was observed, and is predominantly due to pH changes. In a rat brain tumor model with blood brain barrier disruption, intravenous Glu injection resulted in a clear elevation of GluCEST and a comparable increase in the proton magnetic resonance spectroscopy signal of Glu. GluCEST maps from healthy human brain at 7T were also obtained. These results demonstrate the feasibility and potential of GluCEST for mapping relative changes in Glu concentration as well as pH in vivo. Potential contributions from other brain metabolites to the GluCEST effect are also discussed.
In general, multiple components such as water direct saturation (DS), magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear overhauser effect (NOE) contribute to Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE effect located on single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variation of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared to the normal brain tissue. Additionally, the CEST@2ppm decreased with tumor progression. The CEST@2ppm was found to correlate with the creatine concentration quantified with proton magnetic resonance spectroscopy (1H-MRS). Based on the correlation curve, the creatine contribution to the CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Creatine (Cr), phosphocreatine (PCr) and adenosine-5-triphosphate (ATP) are the major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited so far. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7–8 times higher than PCr and ATP. Higher exchange rate in Cr is associated with lower pKa value suggesting the faster dissociation of its amine protons when compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high resolution proton imaging of Cr without any contamination from PCr. Potential applications of these finding in biomedical imaging are discussed.
ATP derived from the conversion of phosphocreatine to creatine by creatine kinase provides an essential chemical energy source that governs myocardial contraction. Here, we demonstrate that the exchange of amine protons from creatine with protons in bulk water can be exploited to image creatine through chemical exchange saturation transfer (CrEST) in myocardial tissue. We show that CrEST provides about two orders of magnitude higher sensitivity compared to 1H magnetic resonance spectroscopy. Results of CrEST studies from ex vivo myocardial tissue strongly correlate with results from 1H and 31P magnetic resonance spectroscopy and biochemical analysis. We demonstrate the feasibility of CrEST measurement in healthy and infarcted myocardium in animal models in vivo on a 3-T clinical scanner. As proof of principle, we show the conversion of phosphocreatine to creatine by spatiotemporal mapping of creatine changes in the exercised human calf muscle. We also discuss the potential utility of CrEST in studying myocardial disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.