Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a approximately 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (betaPIX). The domain is composed of 11 alpha-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the ␣1, ␣6, and ␣9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k cat values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42-and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl.
We have identified ARAP1 and ARAP2 and examined ARAP1 as a possible link between phosphoinositide-, Arf-, and Rho-mediated cell signaling. ARAP1 contains Arf GAP, Rho GAP, Ankyrin repeat, Ras-associating, and five PH domains. In vitro, ARAP1 had Rho GAP and phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Arf GAP activity. ARAP1 associated with the Golgi. The Rho GAP activity mediated cell rounding and loss of stress fibers when ARAP1 was overexpressed. The Arf GAP activity mediated changes in the Golgi apparatus and the formation of filopodia, the latter a consequence of increased cellular activity of Cdc42. The Arf GAP and Rho GAP activities both contributed to inhibiting cell spreading. Thus, ARAP1 is a PIP3-dependent Arf GAP that regulates Arf-, Rho-, and Cdc42-dependent cell activities.
The dbl oncogene encodes a prototype member of the Rho GTPase guanine nucleotide exchange factor (GEF) family. Oncogenic activation of proto-Dbl occurs through truncation of the N-terminal 497 residues. The C-terminal half of proto-Dbl includes residues 498 to 680 and 710 to 815, which fold into the Dbl homology (DH) domain and the pleckstrin homology (PH) domain, respectively, both of which are essential for cell transformation via the Rho GEF activity or cytoskeletal targeting function. Here we have investigated the mechanism of the apparent negative regulation of proto-Dbl imposed by the N-terminal sequences. Deletion of the N-terminal 285 or C-terminal 100 residues of proto-Dbl did not significantly affect either its transforming activity or GEF activity, while removal of the N-terminal 348 amino acids resulted in a significant increase in both transformation and GEF potential. Proto-Dbl displayed a mostly perinuclear distribution pattern, similar to a polypeptide derived from its N-terminal sequences, whereas onco-Dbl colocalized with actin stress fibers, like the PH domain. Coexpression of the N-terminal 482 residues with onco-Dbl resulted in disruption of its cytoskeletal localization and led to inhibition of onco-Dbl transforming activity. The apparent interference with the DH and PH functions by the N-terminal sequences can be rationalized by the observation that the N-terminal 482 residues or a fragment containing residues 286 to 482 binds specifically to the PH domain, limiting the access of Rho GTPases to the catalytic DH domain and masking the intracellular targeting function of the PH domain. Taken together, our findings unveiled an autoinhibitory mode of regulation of proto-Dbl that is mediated by the intramolecular interaction between its N-terminal sequences and PH domain, directly impacting both the GEF function and intracellular distribution.The proto-Dbl protein is the prototype member of a large family of guanine nucleotide exchange factors (GEFs) for Rho GTPases (8,50). Oncogenic activation of proto-Dbl occurs by truncation of the amino-terminal 497 residues (41), resulting in constitutively active carboxyl-terminal sequences that include a Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain, the conserved motifs of the Dbl family. Many members of this family, including Vav, Ect2, Tim, Ost, Dbs, Lbc, Lfc, Lsc, and Net, possess transformation or invasion ability, similar to onco-Dbl upon activation. In many cases, the DH-PH module represents the minimum structural unit that is required for cell transformation (8,50).A large body of evidence has helped establish that the biological functions of Dbl family members are intimately dependent upon their ability to interact with and activate Rho GTPases and that the cellular effects of Dbl-like proteins, including actin cytoskeletal reorganization, cell growth stimulation, and transformation, are likely the consequences of coordinated action of their immediate downstream substrates, the Rho family GTPases (8,47,50). The eviden...
The dbl oncogene product (onco-Dbl) is the prototype member of a family of guanine nucleotide exchange factors (GEFs) for Rho GTPases. The Dbl homology (DH) domain of onco-Dbl is responsible for the GEF catalytic activity, and the DH domain, together with the immediately adjacent pleckstrin homology (PH) domain, constitutes the minimum module bearing transforming function. In the present study, we demonstrate that the onco-Dbl protein exists in oligomeric form in vitro and in cells. The oligomerization is mostly homophilic in nature and is mediated by the DH domain. Mutagenesis studies mapped the region involved in oligomerization to the conserved region 2 of the DH domain, which is located at the opposite side of the Rho GTPase interacting surface. Residue His556 of this region, in particular, is important for this activity, since the H556A mutant retained the GEF catalytic capability and the binding activity toward Cdc42 and RhoA in vitro but was deficient in oligomer formation. Consequently, the Rho GTPase activating potential of the H556A mutant was significantly reduced in cells. The focus-forming and anchorage-independent growth activities of onco-Dbl were completely abolished by the His556-to-Ala mutation, whereas the abilities to stimulate cell growth, activate Jun N-terminal kinase, and cause actin cytoskeletal changes were retained by the mutant. The ability of onco-Dbl to oligomerize allowed multiple Rho GTPases to be recruited to the same signaling complex, and such an ability is defective in the H556A mutant. Taken together, these results suggest that oligomerization of onco-Dbl through the DH domain is essential for cellular transformation by providing the means to generate a signaling complex that further augments and/or coordinates its Rho GTPase activating potential.The dbl oncogene product (onco-Dbl) was originally isolated from a diffuse B-cell lymphoma (16). Over the past decade, a large group of proteins has joined the Dbl family by virtue of their structural similarity with onco-Dbl in an approximately 300-amino-acid region consisting of a Dbl homology (DH) domain and a pleckstrin homology (PH) domain. Many members of this family, including Vav, Ect2, Tim, Ost, Dbs, Lbc, Lfc, Lsc, and Net, possess a transformation or invasion capability like onco-Dbl has. Other members include proteins identified as gene products of sequences that are rearranged in human diseases (Bcr or FGD1) or as proteins with other catalytic functions, such as the Sos or RasGRF Ras guanine nucleotide exchange factors (GEFs) (for reviews, see references 8 and 58).Onco-Dbl and the related yeast protein Cdc24 were among the first to be realized to function as Rho GTPase GEFs, i.e., to stimulate the replacement of bound GDP by GTP on specific members of the Rho family small GTPases (25, 62). Subsequent studies of individual Dbl-like molecules have found that Lbc, Lfc, and Lsc oncoproteins act as specific GEFs for Rho and cause cellular transformation through the Rho signaling pathway (19,57,64), the ost oncogene product sho...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.