RNA polymerase II (RNAPII) is one of the central enzymes in cell growth and organizational development. It is a large macromolecular complex consisting of 12 subunits. Relative to the clear definition of RNAPII structure and biological function, the molecular mechanism of how RNAPII is assembled is poorly understood, and thus the key assembly factors acting for the assembly of RNAPII remain elusive. In this study, we identified two factors, Gpn2 and Rba50, that directly participate in the assembly of RNAPII. Gpn2 and Rba50 were demonstrated to interact with Rpb12 and Rpb3, respectively. An interaction between Gpn2 and Rba50 was also demonstrated. When Gpn2 and Rba50 are functionally defective, the assembly of the Rpb3 subcomplex is disrupted, leading to defects in the assembly of RNAPII. Based on these results, we conclude that Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex and subsequently the biogenesis of RNAPII.
Alzheimer's disease (AD) is a chronic neurodegenerative disease, which is considered as one of the most intractable medical problems with heavy social and economic costs. The current drugs for AD, including acetylcholinesterase inhibitors (AChEIs) and memantine, a NMDA receptor antagonist, only temporarily ameliorate cognitive decline, but are unable to stop or reverse the progression of dementia. This paper reviewed the recent advance in AD drug development. The drug discovery programs under clinical trials targeting cholinergic system, α7 nicotinic acetylcholine receptors (nAChRs), N-methyl-d-aspartate receptor (NMDAR), β-secretase, γ-secretase modulators, tau, inflammatory mediators and glucagon-like peptide-1 (GLP-1) were discussed. Though several drug discovery programs are ongoing, the high failure rate is an outstanding issue. Novel techniques and strategies are desperately needed to significantly accelerate this process.
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the progressive loss of memory and cognition in the aging population. However, the etiology of and therapies for AD remain far from understood. Astrocytes, the most abundant neuroglia in the brain, have recently aroused substantial concern due to their involvement in synaptotoxicity, amyloidosis, neuroinflammation, and oxidative stress. In this review, we summarize the candidate molecules of astrocytes, especially receptors and transporters, that may be involved in AD pathogenesis. These molecules include excitatory amino acid transporters (EAATs), metabotropic glutamate receptor 5 (mGluR5), the adenosine 2A receptor (A2AR), the ␣7-nicotinic acetylcholine receptor (␣7-nAChR), the calcium-sensing receptor (CaSR), S100, and cannabinoid receptors. We describe the characteristics of these molecules and the neurological and pharmacological underpinnings of these molecules in AD. Among these molecules, EAATs, A2AR, and mGluR5 are strongly related to glutamate-mediated synaptotoxicity and are involved in glutamate transmission or the clearance of extrasynaptic glutamate in the AD brain. The ␣7-nAChR, CaSR, and mGluR5 are receptors of A and can induce a plethora of toxic effects, such as the production of excess A, synaptotoxicity, and NO production triggered by changes in intracellular calcium signaling. Antagonists or positive allosteric modulators of these receptors can repair cognitive ability and modify neurobiological changes. Moreover, blocking S100 or activating cannabinoid receptors reduces neuroinflammation, oxidative stress, and reactive astrogliosis. Thus, targeting these molecules might provide alternative approaches for treating AD.
Aerobic exercise induces many adaptive changes in the whole body and improves metabolic characteristics. Klotho, an anti-aging gene, is mainly expressed in the brain and kidney. The roles of Klotho in the brain and kidney during aerobic exercise remain largely unknown. The present study aimed to determine whether aerobic exercise could influence the expression of Klotho, decrease reactive oxygen species (ROS) and prolong life span. Sprague Dawley rats were exercised on a motor treadmill. Klotho mRNA and protein expression levels in rat brain and kidney tissues were examined using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. ROS production was detected following intermittent aerobic exercise (IAE) or continuous aerobic exercise (CAE). Kaplan-Meier curve analysis demonstrated that aerobic exercise significantly improved rat survival (P<0.001). The ROS levels in rat brain and kidney tissues were decreased in the aerobic exercise groups compared with the control group (P<0.05). In addition, Klotho mRNA and protein expression levels were increased significantly following aerobic exercise compared with controls (P<0.05). There was no significant difference between the IAE and CAE groups in any experiments (P>0.05). These results suggest that aerobic exercise-stimulated Klotho upregulation extends the life span by attenuating the excess production of ROS in the brain and kidney. As Klotho exhibits a potential anti-aging effect, promoting Klotho expression through aerobic exercise may be a novel approach for the prevention and treatment of aging and aging-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.