Exosomes play an important role in intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). However, cellular communication between heterogeneous HCC cells with different metastatic potentials and the resultant cancer progression are not fully understood in HCC. Here, HCC cells with high-metastatic capacity (97hm and Huhm) were constructed by continually exerting selective pressure on primary HCC cells (MHCC-97H and Huh7). Through performing exosomal miRNA sequencing in HCC cells with different metastatic potentials (MHCC-97H and 97hm), many significantly different miRNA candidates were found. Among these miRNAs, miR-92a-3p was the most abundant miRNA in the exosomes of highly metastatic HCC cells. Exosomal miR92a-3p was also found enriched in the plasma of HCC patient-derived xenograft mice (PDX) model with high-metastatic potential. Exosomal miR-92a-3p promotes epithelial-mesenchymal transition (EMT) in recipient cancer cells via targeting PTEN and regulating its downstream Akt/Snail signaling. Furthermore, through mRNA sequencing in HCC cells with different metastatic potentials and predicting potential transcription factors of miR92a-3p, upregulated transcript factors E2F1 and c-Myc were found in high-metastatic HCC cells promote the expression of cellular and exosomal miR-92a-3p in HCC by directly binding the promoter of its host gene, miR17HG. Clinical data showed that a high plasma exosomal miR92a-3p level was correlated with shortened overall survival and disease-free survival, indicating poor prognosis in HCC patients. In conclusion, hepatoma-derived exosomal miR92a-3p plays a critical role in the EMT progression and promoting metastasis by inhibiting PTEN and activating Akt/Snail signaling. Exosomal miR92a-3p is a potential predictive biomarker for HCC metastasis, and this may provoke the development of novel therapeutic and preventing strategies against metastasis of HCC.
Both of the surface topographical features and distribution of biochemical cues can influence the cell-substrate interactions and thereby tissue regeneration
in vivo
. However, they have not been combined simultaneously onto a biodegradable scaffold to demonstrate the synergistic role so far. In this study, a proof-of-concept study is performed to prepare micropatterns and peptide gradient on the inner wall of a poly (D,L-lactide-
co
-caprolactone) (PLCL) guidance conduit and its advantages in regeneration of peripheral nerve
in vivo
. After linear ridges/grooves of 20/40 μm in width are created on the PLCL film, its surface is aminolyzed in a kinetically controlled manner to obtain the continuous gradient of amino groups, which are then transferred to CQAASIKVAV peptide density gradient via covalent coupling of glutaraldehyde. The Schwann cells are better aligned along with the stripes, and show a faster migration rate toward the region of higher peptide density. Implantation of the nerve guidance conduit made of the PLCL film having both the micropatterns and peptide gradient can significantly accelerate the regeneration of sciatic nerve in terms of rate, function recovery and microstructures, and reduction of fibrosis in muscle tissues. Moreover, this nerve conduit can also benefit the M2 polarization of macrophages and promote vascularization
in vivo
.
High-pressure injection injury of the hand is a rare but severe emergency, which requires full attention and timely treatment. However, the early symptoms may not be obvious. As the swelling and necrosis progress, the condition gradually worsens, and in severe cases, it may end with amputation. We report a particular case of a hand injection injury, which occurred to a worker who worked overtime to produce disinfectant during the Coronavirus Disease-19 (COVID-19) pandemic. Because of the chemical toxicity of the disinfectant and pressure's damage, although the emergency debridement was promptly performed, we still lost some fingers in the end. In the existing disinfection product manuals, we have not seen any tips on dealing with tissue injection injury. It may reduce workers' attention to injuries, leading to delays in emergency operations.
Background
Many solutions have been proposed in treating of forearm supination. Comparing with other supination function reconstructions, pronator teres rerouting is believed to be less effective. The aim of this study is to introduce a modified procedure, which avoids the shortness from previous attempts, and obtains good result.
Patients and Methods:
From 2015 to 2020, 11 patients have restored forearm supination by rerouting of the pronator teres weave sutured with allogeneic tendons. The average follow-up period was 17.5 months (12 to 24). The range of active supination at the final follow-up was recorded.
Results
Almost all patients acquired good supination range. The average active post-operative supination was 72.7° (60° to 80°) at the final follow-up. No complication was observed. All patients retained full range of pronation.
Conclusions
This study provides a modified supination function reconstruction with simple operating, fine results, low risks, and no affecting of pronation function. The use of allogeneic tendon makes up for the muscles with insufficient length, making it valuable to reconsider those rebuilding operations that were once considered unpromising by many.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.