Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), native to China, is one of the most economically and ecologically important bamboo species. Since the economic interests and the strong clonality, it has been widely cultivated in southern China, which inevitably reduces the natural stands and leads to gene loss in this species. In this study, three natural populations of Moso bamboo distributed in Anhui, Guangxi, and Zhejiang province, were used to analyze the correlation between phenotypic traits, cell structure, and material properties from the perspective of phenotypic, genetic, and environmental. Among those traits and properties, fiber width was correlated with wall thickness at breast height and average nodes length under branch positively. Leaf length was correlated positively with fiber lumen diameter and parenchyma lumen diameter. Furthermore, it showed a very close correlation between moisture content, bending strength, modulus of elasticity, and diameter at breast height, clear height, and leaf length. The lumen diameter of fiber cell wall thickness is positively correlated with bending strength and modulus of elasticity. Density is positively correlated with parenchyma cell wall thickness. The experimental design is relatively detailed and representative, and the workload is huge. This study reflects the research objectives with scientific and rational experiments and data. This study will analyze the differences of various indicators from the perspective of genetic to build a bridge between micro-structure and macro-structure for rational utilization of the whole area of Moso bamboo resources in China.
The Orchidaceae is a large family of perennial herbs especially noted for the exceptional diversity of specialized owers adapted for insect pollination. Elucidating the genetic regulation of owering and seed development of orchids is an important research goal with potential utility in orchid breeding programs. Auxin Response Factor (ARF) genes encode auxin-responsive transcription factors, which are involved in the regulation of diverse morphogenetic processes, including owering and seed development. However, limited information on the ARF gene family in the Orchidaceae is available. In this study, 112 ARF genes were identi ed in the genomes of ve orchid species (Phalaenopsis aphrodite, Phalaenopsis equestris, Vanilla planifolia, Apostasia shenzhenica, and Dendrobium catenatum). These genes were grouped into seven subfamilies based on their phylogenetic relationships. Compared with the ARF family in model plants, such as Arabidopsis thaliana and Oryza sativa, one subfamily of ARF genes involved in pollen wall synthesis has been lost during evolution of the Orchidaceae. This loss corresponds with absence of the exine in the pollinia. Transcriptome analysis indicated that the ARF genes of subfamily 4 may play an important role in ower formation and plant growth, whereas those of subfamily 3 are potentially involved in pollen wall development. Through mining of the published genomic and transcriptomic data for the ve species, the present results provide novel insights into the genetic regulation of unique morphogenetic phenomena of orchids. This study lays a foundation for further analysis of the regulatory mechanisms and functions of sexual reproduction-related genes in orchids. Key MessageGenome wide analysis and expression pattern analysis of ARF genes in ve 20 Orchidaceae species highlight their Evolutionary characteristics and roles in IAA response.
As a woody plant, peony (Paeonia suffruticosa) has a long growth cycle and inefficient traditional breeding techniques. There is an urgent need in peony molecular breeding to establish an efficient and stable in vitro regeneration and genetic transformation system, in order to overcome the recalcitrant characteristics of peony regeneration and shorten the breeding cycle. The development of plant somatic embryos is an important way to establish an efficient and stable in vitro regeneration and genetic transformation system. Plant-specific WUSCHEL-related homeobox (WOX) family transcription factors play important roles in plant development, from embryogenesis to lateral organ development. Therefore, in this research, four PoWOX genes of “Fengdan” (Paeonia ostii) were cloned from the peony genome and transcriptome data of preliminary peony somatic embryos. The sequence characteristics and evolutionary relationships of the PoWOX genes were analyzed. It was demonstrated that the four PoWOX genes, named PoWOX1, PoWOX4, PoWOX11, and PoWOX13, belonged to three branches of the WOX gene family. Their expression patterns were analyzed at different stages of development and in different tissues of peony seedlings. The expression localization of the PoWOX genes was determined to be the nucleus via subcellular localization assay. Finally, the interaction protein of the PoWOX genes was identified via yeast two-hybrid assay combined with bimolecular fluorescence complementation assay. It was shown that PoWOX1 and PoWOX13 proteins could form homodimers by themselves, and PoWOX11 interacted with PoWOX1 and PoWOX13 to form heterodimers. Peony stem cell activity may be regulated from PoWOX1 and PoWOX13 by forming dimers and moving to peony stem cells through plasmodesmata. Additionally, PoWOX11–PoWOX1 and PoWOX11–PoWOX13 may play important regulatory functions in promoting the proliferation of stem cells and maintaining the homeostasis of stem cells in the SAM of peony stems. Exploring the critical genes and regulatory factors in the development of the peony somatic embryo is beneficial not only to understand the molecular and regulatory mechanisms of peony somatic embryo development but also to achieve directed breeding and improvements in efficiency through genetic engineering breeding technology to accelerate the fundamental process of molecular breeding in peony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.