Background: microRNAs (miRNAs) are small non-coding RNAs and have been shown to play a crucial role in the colorectal cancer (CRC) tumorigenesis and progression. The aim of this study was to investigate the clinical significance and prognostic value of miR-140-5p in CRC. The exact functions and the underlying molecular mechanisms of miR-140-5p in CRC was further determined. Methods: miR-140-5p expression was detected in CRC samples, their adjacent nontumor tissues as well as CRC cell lines by RT-qPCR. Cell proliferation was detected using CCK-8, and cell invasion and migration were evaluated using Transwell assay. The direct regulation of VEGFA by miR-140-5p was identified using luciferase reporter assay. Results: miR-140-5p was significantly dowregulated in CRC tissues and cell lines. Downregulation of miR-140-5p was significantly correlated with advanced CRC stage and poorer overall survival. Both gain-of-function and loss of function studies demonstrated that miR-140-5p acted as a tumor suppressor by inhibiting cell proliferation, migration and invasion. Integrated analysis identified VEGFA as a direct and functional target gene of miR-140-5p. Silencing VEGFA by small interfering RNA (siRNA) resembled the phenotype resulting from ectopic miR-140-5p expression, while overexpression of VEGFA attenuated the effect of miR-140-5p on CRC cells. Conclusions: Our results suggested a tumor suppressive role of miR-140-5p in CRC tumorigenesis and progression by targeting VEGFA.
Long noncoding RNAs (lncRNA) are attractive biomarkers and therapeutic targets because of their disease- and stage-restricted expression. Small nucleolar RNA host gene 17 (SNHG17) belongs to a large family of noncoding genes hosting small RNAs, with its expression pattern and biological function not clarified in gastric cancer (GC). Thus, we conducted this study to investigate the functional significance and the underlying mechanisms of SNHG17 in GC progression. Our results showed that SNHG17 expression was upregulated in GC tissues and cells, and its high expression was significantly correlated with increased invasion depth, lymphatic metastasis, and advanced TNM stage. The expression of plasma SNHG17 was also found upregulated in patients with GC compared with healthy controls, with a moderate accuracy for diagnosis of GC (area under the receiver operating characteristic curve = 0.748; 95% CI, 0.666-0.830). Gain- and loss-of-function of SNHG17 revealed that SNHG17 promoted GC cell proliferation, cell cycle progression, invasion, and migration and inhibited apoptosis. Mechanistic investigations showed that SNHG17 was associated with polycomb repressive complex 2 and that this association was required for epigenetic repression of cyclin-dependent protein kinase inhibitors, including p15 and p57, thus contributing to the regulation of GC cell cycle and proliferation. Furthermore, rescue experiments indicated that SNHG17 functioned as an oncogene via activating enhancer of zeste homolog 2 in GC cells. Our study provides a new perspective for SNHG17 acting as a noncoding oncogene in GC tumorigenesis, and it may serve as a novel early diagnostic marker and potential target for the treatment of GC.
Background/Aims: Emerging evidence points towards an important role of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of gastric cancer (GC). MT1JP has recently been reported to be differentially expressed and act as a tumor suppressor in different tumors, with its mechanisms not fully understood in GC. Methods: RT-qPCR was used to detect the expression of MT1JP, miR-214-3p and RUNX3 in tumor tissues and cell lines of GC. The CCK-8 assay, colony formation, Transwell assay and wound healing assay were used to evaluate the proliferation, invasion and migration of GC cells, respectively. Bioinformatics analysis and luciferase reporter assay were performed to disclose the interaction between MT1JP, miR-214-3p and RUNX3. Western blot and immunofluorescence were applied to assess the downstream signaling of RUNX3. Results: MT1JP was found downregulated in GC tissues and cells. Low expression of MT1JP was significantly correlated with advanced TNM stage and lymphatic metastasis. The expression of plasma MT1JP was also found decreased in GC patients compared to healthy controls, with an area under the ROC curve (AUC) of 0.649 for diagnosis of GC. Gain-and loss-of-function of MT1JP revealed that MT1JP functioned as a ceRNA for miR-214-3p to facilitate RUNX3 expression and then upregulated p21 and Bim levels suppressing GC cell proliferation, invasion and migration, and promoting apoptosis. Furthermore, MT1JP overexpression suppressed tumor growth and inhibited the expression of miR-214-3p and proliferation antigen Ki-67, but increased the expression of RUNX3, p21 and Bim in vivo. Conclusions: Our results suggest a potential ceRNA regulatory network involving MT1JP regulates RUNX3 expression by competitively binding endogenous miR-214-3p in tumorigenesis and progression of GC. This mechanism may contribute to a better understanding of GC pathogenesis and provide potential therapeutic strategy for GC.
Esophageal cancer is one of the most aggressive cancers in the world. Recent large-scale genome-wide association studies (GWAS) reported that functional genetic variations in the phospholipase C epsilon gene (PLCE1) were strongly associated with risk of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) in Chinese population. For C20orf54 rs13042395 genotype and risk of esophageal cancer, the results were inconsistent. We conducted a replication case-control study to evaluate the genetic effects of these two functional single nucleotide polymorphisms (SNPs) on the development of esophageal cancer. A total of 380 cases and 380 controls were recruited for this study. The genotypes were determined by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS). The variant alleles of the functional polymorphism, PLCE1 rs2274223 SNP was associated with the increased risk of esophageal cancer [adjusted odds ratio (OR) = 1.95, 95 % confidence interval (CI) = 1.05-3.59 for PLCE1 rs2274223 GG vs. AA]. However, there was no significant association between the C20orf54 rs13042395 genotype and esophageal cancer risk (adjusted OR = 0.99, 95 % CI = 0.63-1.57 for C20orf54 rs13042395 TT vs. CC). Stratified analyses indicated a significantly increased risk of esophageal cancer associated with the PLCE1 rs2274223 AG genotype was more evident among females, younger patients and never drinkers, compared with the PLCE1 rs2274223 AA genotypes. Stratified analyses also indicated a significantly increased risk of esophageal cancer associated with the PLCE1 rs2274223 GG genotype was more evident among never smokers and never drinkers compared with the PLCE1 rs2274223 AA genotypes. These findings indicated that functional polymorphisms PLCE1 rs2274223 might contribute to esophageal cancer susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.