Karst basins have a relatively low capacity for water retention, rendering them very vulnerable to drought hazards. However, karst geo-climatic features are highly spatially heterogeneous, making reliable drought assessment challenging. To account for geo-climatic heterogeneous features and to enhance the reliability of drought assessment, a framework methodology is proposed. Firstly, based on the history of climate (1963–2019) from the Global Climate Model (GCM) and station observations within the Chengbi River karst basin, a multi-station calibration-based automated statistical downscaling (ASD) model is developed, and the Kling–Gupta efficiency (KGE) and Nash–Sutcliffe efficiency (NSE) are selected as performance metrics. After that, future climate (2023–2100) under three GCM scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) are obtained by using the ASD model. Finally, the Standardized Precipitation Evapotranspiration Index (SPEI), calculated by future climate is applied to assess drought conditions. The results indicate that the multi-station calibration-based ASD model has good performance and thus can be used for climate data downscaling in karst areas. Precipitation mainly shows a significant upward trend under all scenarios with the maximum variation (128.22%), while the temperature shows a slow upward trend with the maximum variation (3.44%). The drought condition in the 2040s is still relatively severe. In the 2060s and 2080s, the basin is wetter compared with the historical period. The percentage of drought duration decreases in most areas from the 2040s to the 2080s, demonstrating that the future drought condition is alleviated. From the SSP1-2.6 scenario to the SSP5-8.5 scenario, the trend of drought may also increase.
As the runoff series exhibit nonlinear and nonstationary characteristics, capturing the embedded periodicity and regularity in the runoff series using a single model is challenging. To account for these runoff characteristics and enhance the forecasting precision, this research proposed a new empirical wavelet transform–particle swarm optimization–support vector machine (EWT–PSO–SVM) hybrid model based on “decomposition-forecasting-reconstruction” for runoff forecasting and investigated its effectiveness in the karst area. First, empirical wavelet transform (EWT) was employed to decompose the original runoff series into multiple subseries. Second, the support vector machine (SVM) optimized by particle swarm optimization (PSO) was applied to forecast every signal subseries. Finally, this study summarized the predictions of the subseries to reconstruct the ultimate runoff forecasting. The developed forecasting model was assessed by applying the monthly runoff series of the Chengbi River Karst Basin, and the composite rating index combined with five metrics was adopted as the performance evaluation tool. From the results of this research, it is clear that the EWT–PSO–SVM model outperforms both the PSO–SVM model and the SVM model in terms of the composite rating index, reaching 0.68. Furthermore, verifying the performance stability, the developed model was also compared with PSO–SVM and SVM models under different input data structures. The comparison demonstrated that the hybrid EWT–PSO–SVM model had a robust performance superiority and was an effective model that can be applied to karst area runoff forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.