Organolead triiodide perovskite (CH3NH3PbI3) as a light-sensitive material has attracted extensive attention in optoelectronics. The reported perovskite photodetectors (PDs) mainly focus on the individual, which limits their spatial imaging applications. Uniform perovskite networks combining transparency and device performance were synthesized on poly(ethylene terephthalate) (PET) by controlling perovskite crystallization. Photodetector arrays based on above network were fabricated to demonstrate the potential for image mapping. The trade-off between the PD performance and transparency was systematically investigated and the optimal device was obtained from 30 wt % precursor concentration. The switching ratio, normalized detectivity, and equivalent dark current derived shot noise as the critical parameters of PD arrays reached 300, 1.02 × 10(12) Jones, and 4.73 × 10(-15)A Hz(-1/2), respectively. Furthermore, the PD arrays could clearly detect spatial light intensity distribution, thus demonstrating its preliminary imaging function. The perovskite network PD arrays fabricated on PET substrates could also conduct superior flexibility under wide angle and large number of bending. For the common problem of perovskite optoelectronics in stability, the perovskite networks sheathed with hydrophobic polymers greatly enhanced the device stability due to the improved interface contacts, surface passivation, and moisture isolation. Taking into consideration transparency, flexibility, imaging and stability, the present PD arrays were expected to be widely applied in visualized portable optoelectronic system.
Organolead halide perovskites are becoming intriguing materials applied in optoelectronics. In the present work, organolead iodide perovskite (OIP) nanowires (NWs) have been fabricated by a one step self-assembly method. The controllable NW distributions were implemented by a series of facile techniques: monolayer and small diameter NWs were prepared by precursor concentration tuning; NW patterning was achieved via selected area treatment assisted by a mask; NW alignment was implemented by modified evaporation-induced self-assembly (EISA). The synthesized multifunctional NWs were further applied in photodetectors (PDs) and solar cells as application demos. The PD performances have reached 1.32 AW(-1) for responsivity, 2.5 × 10(12) Jones for detectivity and 0.3 ms for response speed, superior to OIP films and other typical inorganic NW based PD performances. An energy conversion efficiency of ∼2.5% has been obtained for NW film based solar cells. The facile fabrication process, controllable distribution and optoelectronic applications make the OIP NWs promising building blocks for future optoelectronics, especially for low dimensional devices.
The transitionmetal dichalcogenides‐based phototransistors have demonstrated high transport mobility but are limited to poor photoresponse, which greatly blocks their applications in optoelectronic fields. Here, light sensitive PbS colloidal quantum dots (QDs) combined with 2D WSe2 to develop hybrid QDs/2D‐WSe2 phototransistors for high performance and broadband photodetection are utilized. The device shows a responsivity up to 2 × 105 A W–1, which is orders of magnitude higher than the counterpart of individual material‐based devices. The detection spectra of hybrid devices can be extended to near infrared similar to QDs' response. The high performance of hybrid 0D‐2D phototransistor is ascribed to the synergistic function of photogating effect. PbS QDs can efficiently absorb the input illumination and 2D WSe2 supports a transport expressway for injected photocarriers. The hybrid phototransistors obtain a specific detectivity over 1013 Jones in both ON and OFF state in contrast to the depleted working state (OFF) for other reported QDs/2D phototransistors. The present device construction strategy, photogating enhanced performance, and robust device working conditions contain high potential for future optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.