The formation and influence of compressive membrane action in reinforced concrete slabs is discussed. An experimental program is described, in which two large-scale slab specimens were tested under concentrated midspan loads. One slab was restrained against lateral expansion at the ends, while the other was free to elongate. The laterally restrained specimen developed high axial compressive forces, which resulted in a significant increase in flexural stiffness and load capacity. A nonlinear analysis procedure was used to model specimen behaviour. The analysis method was found to adequately represent important second-order effects, and thus gave reasonably accurate predictions of load–deformation response and ultimate load. Key words: analysis, concrete, deformation, load, membrane, reinforced, slabs, strength, tests.
The present work summarizes some recent experimental, theoretical and numerical results on brittle fracture of isostatic polycrystalline graphite. The analyses have been carried out on Vnotched samples under mixed mode (I+II), torsion and compression loading, considering various combinations of the notch tip radius, opening angle and notch tilt angle. The static strength of the considered specimens is assessed through an approach based on the strain energy density averaged over a control volume. The center of the control volume is located on the notch edge, where the principal stress reaches its maximum value. The correct orientation is obtained by a rigid rotation of the crescent-shaped volume while the size depends on the fracture toughness and the ultimate strength of the material. This methodology has been already used in the literature to analyze U-and V-shaped notches subject to mode I loading with very good results and advantages with respect to classic approaches. The results reported in this new work show, also under mixed mode loading conditions, good agreement between experimental data and theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.