We present a result applicable to classification learning algorithms that generate decision trees or rules using the information entropy minimization heuristic for discretizing continuous-valued attributes. The result serves to give a better understanding of the entropy measure, to point out that the behavior of the information entropy heuristic possesses desirable properties that justify its usage in a formal sense, and to improve the efficiency of evaluating continuous-valued attributes for cut value selection. Along with the formal proof, we present empirical results that demonstrate the theoretically expected reduction in evaluation effort for training data sets from real-world domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.