The inclusion of Ln(III) ions into the 12-MC-4 framework generates the first heterotrimetallic complexes of this molecular class. The controllable and deliberate preparations of these compounds are demonstrated through 12 crystal structures of the Ln(III)M(I)(OAc)4[12-MCMn(III)(N)shi-4](H2O)4·6DMF complex, where OAc(-) is acetate, shi(3-) is salicylhydroximate, and DMF is N,N-dimethylformamide. Compounds 1-12 have M(I) as Na(I), and Ln(III) can be Pr(III) (1), Nd(III) (2), Sm(III) (3), Eu(III) (4), Gd(III) (5), Tb(III) (6), Dy(III) (7), Ho(III) (8), Er(III) (9), Tm(III) (10), Yb(III) (11), and Y(III) (12). An example with M(I) = K(I) and Ln(III) = Dy(III) is also reported (Dy(III)K(OAc)4[12-MCMn(III)(N)shi-4](DMF)4·DMF (14)). When La(III), Ce(III), or Lu(III) is used as the Ln(III) ions to prepare the Ln(III)Na(I)(OAc)4[12-MCMn(III)(N)shi-4] complex, the compound Na2(OAc)2[12-MCMn(III)(N)shi-4](DMF)6·2DMF·1.60H2O (13) results. For compounds 1-12, the identity of the Ln(III) ion affects the 12-MCMn(III)(N)shi-4 framework as the largest Ln(III), Pr(III), causes an expansion of the 12-MCMn(III)(N)shi-4 framework as demonstrated by the largest metallacrown cavity radius (0.58 Å for 1 to 0.54 Å for 11), and the Pr(III) causes the 12-MCMn(III)(N)shi-4 framework to be the most domed structure as evident in the largest average angle about the axial coordination of the ring Mn(III) ions (103.95° for 1 to 101.69° for 11). For 14, the substitution of K(I) for Na(I) does not significantly affect the 12-MCMn(III)(N)shi-4 framework as many of the structural parameters such as the metallacrown cavity radius (0.56 Å) fall within the range of compounds 1-12. However, the use of the larger K(I) ion does cause the 12-MCMn(III)(N)shi-4 framework to become more planar as evident in a smaller average angle about the axial coordination of the ring Mn(III) ions (101.35°) compared to the analogous Dy(III)/Na(I) (7) complex (102.40°). In addition to broadening the range of structures available through the metallacrown analogy, these complexes allow for the mixing and matching of a diverse range of metals that might permit the fine-tuning of molecular properties where one day they may be exploited as magnetic materials or luminescent agents.
The radical SAM enzyme, viperin, exerts a wide range of antiviral effects through both the synthesis of the antiviral nucleotide 3′-deoxy-3′,4′-didehydro-CTP (ddhCTP) and through its interactions with various cellular and viral proteins. Here we investigate the interaction of viperin with hepatitis C virus nonstructural protein 5A (NS5A) and the host sterol regulatory protein, vesicle-associated membrane protein A (VAP-33). NS5A and VAP-33 form part of the viral replication complex that is essential for replicating the RNA genome of the hepatitis C virus. Using transfected enzymes in HEK293T cells, we show that viperin binds independently to both NS5A and the C-terminal domain of VAP-33 (VAP-33C) and that this interaction is dependent on the proteins being colocalized to the ER membrane. Coexpression of VAP-33C and NS5A resulted in changes to the catalytic activity of viperin that depended upon viperin being colocalized to the ER membrane. The viperin-NS5A-VAP-33C complex exhibited the lowest specific activity, indicating that NS5A may inhibit viperin’s ability to synthesize ddhCTP. Coexpression of viperin with NS5A was also found to significantly reduce cellular NS5A levels, most likely by increasing the rate of proteasomal degradation. An inactive mutant of viperin, unable to bind the iron–sulfur cluster, was similarly effective at reducing cellular NS5A levels.
Understanding the mechanisms by which viruses evade host cell immune defenses is important for developing improved antiviral therapies. In an unusual twist, human cytomegalovirus co-opts the antiviral radical SAM enzyme viperin (virus-inhibitory protein, endoplasmic reticulum–associated, interferon-inducible) to enhance viral infectivity. This process involves translocation of viperin to the mitochondrion, where it binds the β-subunit (HADHB) of the mitochondrial trifunctional enzyme complex that catalyzes thiolysis of β-ketoacyl–CoA esters as part of fatty acid β-oxidation. Here we investigated how the interaction between these two enzymes alters their activities and affects cellular ATP levels. Experiments with purified enzymes indicated that viperin inhibits the thiolase activity of HADHB, but, unexpectedly, HADHB activates viperin, leading to synthesis of the antiviral nucleotide 3′-deoxy-3′,4′-didehydro-CTP. Measurements of enzyme activities in lysates prepared from transfected HEK293T cells expressing these enzymes mirrored the findings obtained with purified enzymes. Thus, localizing viperin to mitochondria decreased thiolase activity, and coexpression of HADHB significantly increased viperin activity. Furthermore, targeting viperin to mitochondria also increased the rate at which HADHB is retrotranslocated out of mitochondria and degraded, providing an additional mechanism by which viperin reduces HADHB activity. Targeting viperin to mitochondria decreased cellular ATP levels by more than 50%, consistent with the enzyme disrupting fatty acid catabolism. These results provide biochemical insight into the mechanism by which human cytomegalovirus subverts viperin; they also provide a biochemical rationale for viperin's recently discovered role in regulating thermogenesis in adipose tissues.
Viperin is a radical S-adenosylmethionine (SAM) enzyme that plays a multifaceted role in the cellular antiviral response. Viperin was recently shown to catalyze the SAM-dependent formation of 3ʹ-deoxy-3′,4ʹ-didehydro-CTP (ddhCTP), which inhibits some viral RNA polymerases. Viperin is also implicated in regulating K63-linked poly-ubiquitination of interleukin-1 receptor-associated kinase-1 (IRAK1) by the E3 ubiquitin ligase TNF Receptor-Associated Factor 6 (TRAF6) as part of the Toll-like receptor-7 and 9 (TLR7/9) innate immune signaling pathways. We show that IRAK1 and TRAF6 activate viperin to efficiently catalyze the radical-mediated dehydration of CTP to ddhCTP. Furthermore, poly-ubiquitination of IRAK1 requires the association of viperin with IRAK1 and TRAF6. Poly-ubiquitination appears dependent on structural changes induced by SAM binding to viperin but does not require catalytically active viperin. The synergistic activation of viperin and IRAK1 provides a mechanism that couples innate immune signaling with the production of the antiviral nucleotide ddhCTP.that viperin catalyzes the formation of a novel antiviral ribonucleotide, 3ʹ-deoxy-3',4ʹ-didehydro-CTP (ddhCTP; Fig 1d) and that overexpression of viperin in HEK293 causes significant levels of ddhCTP to accumulate (Gizzi et al. 2018). ddhCTP is formed by the dehydration of CTP in a SAM-dependent reaction that is initiated by abstraction of the 4'-hydrogen by the 5'deoxyadenosyl radical. ddhCTP was shown to be an effective chain-terminating inhibitor of RNA synthesis by viral RNA-dependent RNA polymerases from flaviviruses including dengue virus, west Nile virus and Zika virus, thereby providing an explanation for viperin's antiviral properties (Gizzi et al. 2018). The production of anti-viral nucleotides provides one explanation for viperin's antiviral properties; however, many aspects of the enzyme's antiviral effects are not readily explained by the production of ddhCTP. For example, it appears that catalytically inactive viperin mutants are still capable of restricting influenza A infection (Vonderstein et al. 2017), and ddhCTP was designed the experiments. A.B.D. and E.N.G.M. wrote the paper.hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33', J Gen Virol, 93: 83-92. Wang, X., E. R. Hinson, and P. Cresswell. 2007. 'The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts', Cell Host Microbe, 2: 96-105. Wu, J. X., and Z. . 2002. 'Distinct molecular mechanism for initiating TRAF6 signalling', Nature, 418: 443-47.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.