PurposeWith the problem of environment and energy becoming prominent, energy conservation and emission reduction have received more attention. In the using process, buildings not only have the inherent energy consumption but also have the energy consumption of equipment that is installed for improving the indoor environment. This study aims to investigate how to reduce the energy consumption of buildings through utilizing natural resources.Design/methodology/approachThis paper briefly introduces three objective functions in the building energy-saving model: building energy consumption, natural lighting and natural ventilation. Genetic algorithm was used to optimize the building parameters to achieve energy conservation and comfort improvement. Then a two-story rental building was analyzed.FindingsThe genetic algorithm converged to Pareto optimal solution set after 10,000 times of iterations, which took 61024 s. The lowest energy consumption of the scheme that was selected from the 70 optimal solutions was 5580 W/(m2K), the lighting coefficient was 5.56% and Pressure Difference Pascal Hours (PDPH) was 6453 h; compared with the initial building parameters, the building energy consumption reduced by 3.40%, the lighting coefficient increased by 11.65% and PDPH increased by 9.54%.Originality/valueIn short, the genetic algorithm can effectively optimize the energy-saving parameters of buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.