Among the many types of deep models, deep generative models (DGMs) provide a solution to the important problem of unsupervised and semi-supervised learning. However, training DGMs requires more skill, experience, and know-how because their training is more complex than other types of deep models such as convolutional neural networks (CNNs). We develop a visual analytics approach for better understanding and diagnosing the training process of a DGM. To help experts understand the overall training process, we first extract a large amount of time series data that represents training dynamics (e.g., activation changes over time). A blue-noise polyline sampling scheme is then introduced to select time series samples, which can both preserve outliers and reduce visual clutter. To further investigate the root cause of a failed training process, we propose a credit assignment algorithm that indicates how other neurons contribute to the output of the neuron causing the training failure. Two case studies are conducted with machine learning experts to demonstrate how our approach helps understand and diagnose the training processes of DGMs. We also show how our approach can be directly used to analyze other types of deep models, such as CNNs.
Adversarial examples, generated by adding small but intentionally imperceptible perturbations to normal examples, can mislead deep neural networks (DNNs) to make incorrect predictions. Although much work has been done on both adversarial attack and defense, a fine-grained understanding of adversarial examples is still lacking. To address this issue, we present a visual analysis method to explain why adversarial examples are misclassified. The key is to compare and analyze the datapaths of both the adversarial and normal examples. A datapath is a group of critical neurons along with their connections. We formulate the datapath extraction as a subset selection problem and solve it by constructing and training a neural network. A multi-level visualization consisting of a network-level visualization of data flows, a layer-level visualization of feature maps, and a neuron-level visualization of learned features, has been designed to help investigate how datapaths of adversarial and normal examples diverge and merge in the prediction process. A quantitative evaluation and a case study were conducted to demonstrate the promise of our method to explain the misclassification of adversarial examples.
We present an online visual analytics approach to helping users explore and understand hierarchical topic evolution in high-volume text streams. The key idea behind this approach is to identify representative topics in incoming documents and align them with the existing representative topics that they immediately follow (in time). To this end, we learn a set of streaming tree cuts from topic trees based on user-selected focus nodes. A dynamic Bayesian network model has been developed to derive the tree cuts in the incoming topic trees to balance the fitness of each tree cut and the smoothness between adjacent tree cuts. By connecting the corresponding topics at different times, we are able to provide an overview of the evolving hierarchical topics. A sedimentation-based visualization has been designed to enable the interactive analysis of streaming text data from global patterns to local details. We evaluated our method on real-world datasets and the results are generally favorable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.