Cellulose-based hydrogels were prepared by the extraction of cellulose from corncobs after the removal of lignin and hemicellulose with the use of alkali–acid treatment. Acrylate-based hydrogels presently available for personal hygiene uses are not biodegradable. In this study, a biodegradable cellulose-co-AMPS personal hygiene hydrogel was synthesized. The hydrogel was synthesized by graft co-polymerization of 2-acrylamido2-methyl propane sulfonic acid onto corncob cellulose by using potassium persulfate (KPS) as an initiator and borax decahydrate (Na2B4O7·10H2O) as a cross-linking agent. Structural and functional characteristics of the hydrogel such as swelling measurements, antimicrobial tests, FTIR spectra and thermogravimetric analysis were done. The hydrogel showed an average swelling ratio of 279.6 g/g to water and 83.3 g/g to a urine solution with a 97% gel fraction. The hydrogel displayed no clear inhibition zone and did not support the growth of bacteria, Gram-positive or -negative. The FT-IR spectra of the hydrogel confirmed the grafting of an AMPS co-polymer onto cellulose chains. The thermal properties of the hydrogel showed three-step degradation, with a complete degradation temperature of 575 °C.
According to the economic and environmental perspective, multifilament Vectran, yarn spun from liquid crystal polymer, is important because of its quite simple processing during spinning in a wide range of injection moulding, extrusion moulding, and melt spinning. Vectran fiber is an aromatic polyester spun from a liquid crystal polymer in a melt extrusion process. This process orients the molecules along the fiber axis, resulting in a high tenacity fiber, and Vectran melts at 330°C. Heat treatment can improve and vary the tensile strength of Vectran fiber. On average, tensile strength for Vectran is 26 grams/denier (grouped as a high tenacity grade) and the strength of the fiber is maintained after several flexing and bending actions. Abrasion resistance of Vectran is even higher than a similarly sized aramid yarn. In addition, the original dimensions are maintained under variance of temperature with negligible creep and shrinkage. Vectran fiber, characterized by its golden color, high strength and modulus, thermal stability at high temperatures, low creep, and good chemical stability, can be used in many various industries starting from ropes and cables to profound sea survey and military products.
Cattle hoofs are abundantly available by-product sources of organic material from the slaughterhouse. It can be successfully converted into keratin protein. Keratin extracted using alkali hydrolysis has a better conservancy of keratin structure. The purpose of this study is optimizing the extraction of keratin from cuttle hoof. Designing of the experiment, analysis of the results, and optimization of the process parameters have been conducted by central composite design (CCD). Three factors (temperature (A), time (B), and concentration of NaOH (C)) each at five levels have been used to extract the keratin protein from cattle hoof and two response variables (dissolution % and purity %) have been considered in the study. The results obtained demonstrate that extraction temperature, alkali concentration, and time showed a significant effect on the purity and dissolution of keratin. The regression model shows that all factors have positive and significant relation with dissolution percentage whereas only temperature and concentration of NaOH have significant and negative relation with purity percentage. It is observed that the Biuret and Fourier-transform infrared spectroscopy (FTIR) tests showed better preservation of protein structure in extractive keratin. The FTIR spectra, indicates that amide I and amide II occur at a wave length of 1633 and 1542 cm−1 for raw cattle hoof and at wave length of 1650 and 1542 cm−1 for keratin protein, respectively. Thus, it can be concluded that the cattle hoof by-product could offer an alternative keratin source. Finally, the extraction process had an optimum value of 0.5 M NaOH, 60 minutes reaction time, and 55°C temperature with 85% dissolution and 89.6% purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.