The Runt box domain DNA-binding transcription factors (RUNX) play key roles in hematopoietic, bone, and gastric development. These factors regulate angiogenesis and tumorigenic events, functioning as either activators or repressors of target genes. Although RUNX2 is an essential bone maturation factor, it has also been found to promote transformation in vivo and cell proliferation in vitro, perhaps by associating with specific coactivators or corepressors. Adenoviral-mediated overexpression of dominant negative RUNX2 or specific reduction of RUNX2 with RNA-interference inhibits cell proliferation. To determine whether RUNX2 also plays a role in cell transformation, RUNX2 interactions with the coactivator Yes-associated protein (YAP65) were examined. RUNX2 associated with YAP65 via a proline-rich segment in the C-terminal domain (PPPY) and coexpression of RUNX2 and YAP65 significantly increased foci formation and anchorage-independent growth relative to each factor alone. However, in contrast to wild-type RUNX2, a mutant RUNX2(P409A), which does not bind YAP65, did not cooperate with YAP65 to promote anchorage-independent growth. RUNX2 is a strong repressor of the cyclin-dependent kinase inhibitor p21(CIP1), which is known to mediate cell transformation. Overexpression of YAP65 prevented RUNX2-dependent downregulation of p21(CIP1) protein expression while promoting cell transformation. The RUNX2(P409A) mutant retained the ability to bind DNA and repress the p21(CIP1) promoter as shown by DNA precipitation and luciferase-reporter assays, respectively, but was not able to relieve repression of the p21(CIP1) promoter. Therefore, these results reveal a novel function of the RUNX2 and YAP65 interaction in oncogenic transformation that may be mediated by modulation of p21(CIP1) protein expression.
Diabetes mellitus accelerates cardiovascular microangiopathies and atherosclerosis, which are a consequence of hyperglycemia. The aldose reductase (AR) polyol pathway contributes to these microvascular complications, but how it mediates vascular damage in response to hyperglycemia is less understood. The RUNX2 transcription factor, which is repressed in diabetic animals, promotes vascular endothelial cell (EC) migration, proliferation, and angiogenesis. Here we show that physiological levels of glucose (euglycemia) increase RUNX2 DNA binding and transcriptional activity, whereas hyperglycemia does not. However, inhibition of AR reverses hyperglycemic suppression of RUNX2. IGF-1 secretion and IGF receptor phosphorylation by autocrine IGF-1 occur equally in euglycemic or hyperglycemic conditions, suggesting that reduced RUNX2 activity in response to hyperglycemia is not because of altered IGF-1/IGF receptor activation. AR also negatively regulates RUNX2-dependent vascular remodeling in an EC wounded monolayer assay, which is reversed by specific AR inhibition in hyperglycemia. Thus, euglycemia supports RUNX2 activity and promotes normal microvascular EC migration and wound healing, which are repressed under hyperglycemic conditions through the AR polyol pathway.
Intratumoral heterogeneity and treatment resistance drive breast cancer (BC) metastasis and recurrence. The RUNX2 transcription factor is upregulated in early stage luminal BC. However, the precise mechanism by which RUNX2 regulates an oncogenic phenotype in luminal BCs remains an enigma. We show that RUNX2 is predictive of poor overall survival in BC patients. RUNX2 associated with the TAZ transcriptional co-activator to promote a tumorigenic phenotype that was inhibited by knockdown of TAZ. RUNX2 increased endogenous TAZ translocation to the nucleus, which was prevented by inhibiting RUNX2. RUNX2/TAZ interaction was associated with ectodomain shedding of an oncogenic soluble E-Cadherin fragment (sE-Cad), which is known to cooperate with human epidermal growth factor receptor-2 (HER2/ErbB2) to increase BC growth. Neutralizing E-Cadherin antibodies or TAZ knockdown reduced the levels of sE-Cad in RUNX2-expressing BC cells and inhibited tumorsphere formation. RUNX2 expression also increased HER2-mediated tumorsphere size, which was reduced after treatment with the HER2-targeting agents Herceptin and lapatinib. These data support a novel role for RUNX2 in promoting an oncogenic phenotype in luminal BC in the context of TAZ, sE-Cad, and HER2. Using this signaling pathway to monitor BC cell oncogenic activity will accelerate the discovery of new therapeutic modalities to treat BC patients.
KEL 2019-bp SNP does not always correlate with the Js phenotype owing to the presence of an atypical KEL gene with a KEL7 polymorphism at 1910 and a KEL6 polymorphism at 2019. The KEL polymorphism at 2019 is silent and this allele yields a Js(a-b+) phenotype. Only analysis of the 1910-bp SNP can be used to genotype KEL6 and KEL7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.