Ag recognition and Ab production in B cells are major components of the humoral immune response. In the current study, we found that the core fucosylation catalyzed by α1,6-fucosyltransferase (Fut8) was required for the Ag recognition of BCR and the subsequent signal transduction. Moreover, compared with the 3-83 B cells, the coalescing of lipid rafts and Ag-BCR endocytosis were substantially reduced in Fut8-knockdown (3-83-KD) cells with p31 stimulation and then completely restored by reintroduction of the Fut8 gene to the 3-83-KD cells. Indeed, Fut8-null (Fut8−/−) mice evoked a low immune response following OVA immunization. Also, the frequency of IgG-producing cells was significantly reduced in the Fut8−/− spleen following OVA immunization. Our results clearly suggest an unexpected mode of BCR function, in which the core fucosylation of IgG-BCR mediates Ag recognition and, concomitantly, cell signal transduction via BCR and Ab production.
CD82, a member of the tetraspanin superfamily, has been proposed to exert its activity via tetra‐transmembrane protein enriched microdomains (TEMs) in exosomes. The present study aimed to explore the potential of the exosome protein CD82 in diagnosing breast cancers of all stages and various histological subtypes in patients. The results strongly suggest that CD82 expression in breast cancer tissue was significantly lower than that in healthy and benign breast disease tissues. There was a significant negative correlation between CD82 expression in tissues and CD82 content in exosomes, which indicated that CD82 expression was redistributed from tissues to the blood with the development and metastasis of breast cancer.
SummaryMutations in sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) underlie Darier disease (DD), a dominantly inherited skin disorder characterized by loss of keratinocyte adhesion (acantholysis) and abnormal keratinization (dyskeratosis) resulting in characteristic mucocutaneous abnormalities. However, the molecular pathogenic mechanism by which these changes influence keratinocyte adhesion and viability remains unknown. We show here that SERCA2 protein is extremely sensitive to endoplasmic reticulum (ER) stress, which typically results in aggregation and insolubility of the protein. Depletion of ER calcium stores is not necessary for the aggregation but accelerates the progression. Systematic analysis of diverse mutants identical to those found in DD patients demonstrated that the ER stress initiator is the SERCA2 mutant protein itself. These SERCA2 proteins were found to be less soluble, to aggregate and to be more polyubiquitinylated. After transduction into primary human epidermal keratinocytes, mutant SERCA2 aggregates elicited ER stress, caused increased numbers of cells to round up and detach from the culture plate, and induced apoptosis. These mutant induced events were exaggerated by increased ER stress. Furthermore, knockdown SERCA2 in keratinocytes rendered the cells resistant to apoptosis induction. These features of SERCA2 and its mutants establish a mechanistic base to further elucidate the molecular pathogenesis underlying acantholysis and dyskeratosis in DD.
Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1), and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.