Chronological age is an important predictor of morbidity and mortality; however, it is unable to account for heterogeneity in the decline of physiological function and health with advancing age. Several attempts have been made to instead define a "biological age" using multiple physiological parameters in order to account for variation in the trajectory of human aging; however, these methods require technical expertise and are likely too time-intensive and costly to be implemented into clinical practice. Accordingly, we sought to develop a metabolomic signature of biological aging that could predict changes in physiological function with the convenience of a blood sample. A weighted model of biological age was generated based on multiple clinical and physiological measures in a cohort of healthy adults and was then applied to a group of healthy older adults who were tracked longitudinally over a 5-10-year timeframe. Plasma metabolomic signatures were identified that were associated with biological age, including some that could predict whether individuals would age at a faster or slower rate. Metabolites most associated with the rate of biological aging included amino acid, fatty acid, acylcarnitine, sphingolipid, and nucleotide metabolites. These results not only have clinical implications by providing a simple blood-based assay of biological aging, but also provide insight into the molecular mechanisms underlying human healthspan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.