Electrolyte filling is a time-critical step during battery manufacturing that also affects battery performance. The underlying physical phenomena mainly occur on the pore scale and are hard to study experimentally. Therefore, here, the lattice Boltzmann method is used to study the filling of realistic 3D lithium-ion battery cathodes. Electrolyte flow through the nanoporous binder is modelled adequately. Besides process time, the influences of particle size, binder distribution, volume fraction and wetting behavior of active material and binder are investigated. Optimized filling conditions are discussed by pressure-saturation relationships. It is shown how the influencing factors affect the electrolyte saturation. The amount and distribution of entrapped residual gas are analyzed in detail. Both can adversely affect the battery performance. The results indicate how the filling process, the final electrolyte saturation, and also the battery performance can be optimized by adapting process parameters as well as electrode and electrolyte design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.