Sclerostin is a potent inhibitor of Wnt signaling and bone formation. However, there is currently no information on the relation of circulating sclerostin levels to age, gender, or bone mass in humans. Thus we measured serum sclerostin levels in a population-based sample of 362 women [123 premenopausal, 152 postmenopausal not on estrogen treatment (ET), and 87 postmenopausal on ET] and 318 men, aged 21 to 97 years. Sclerostin levels (mean ± SEM) were significantly higher in men than women (33.3 ± 1.0 pmol/L versus 23.7 ± 0.6 pmol/L, p < .001). In pre- and postmenopausal women not on ET combined (n = 275) as well as in men, sclerostin levels were positively associated with age (r = 0.52 and r = 0.64, respectively, p < .001 for both). Over life, serum sclerostin levels increased by 2.4- and 4.6-fold in the women and men, respectively. Moreover, for a given total-body bone mineral content, elderly subjects (age ≥ 60 years) had higher serum sclerostin levels than younger subjects (ages 20 to 39 years). Our data thus demonstrate that (1) men have higher serum sclerostin levels than women, (2) serum sclerostin levels increase markedly with age, and (3) compared with younger subjects, elderly individuals have higher serum sclerostin levels for a given amount of bone mass. Further studies are needed to define the cause of the age-related increase in serum sclerostin levels in humans as well as the potential role of this increase in mediating the known age-related impairment in bone formation. © 2011 American Society for Bone and Mineral Research.
Sex steroids are important regulators of bone turnover, but the mechanisms of their effects on bone remain unclear. Sclerostin is an inhibitor of Wnt signaling, and circulating estrogen (E) levels are inversely associated with sclerostin levels in postmenopausal women. To directly test for sex steroid regulation of sclerostin levels, we examined effects of E treatment of postmenopausal women or selective withdrawal of E versus testosterone (T) in elderly men on circulating sclerostin levels. E treatment of postmenopausal women (n = 17) for 4 weeks led to a 27% decrease in serum sclerostin levels [versus +1% in controls (n = 18), p < .001]. Similarly, in 59 elderly men, we eliminated endogenous E and T production and studied them under conditions of physiologic T and E replacement, and then following withdrawal of T or E, we found that E, but not T, prevented increases in sclerostin levels following induction of sex steroid deficiency. In both sexes, changes in sclerostin levels correlated with changes in bone-resorption, but not bone-formation, markers (r = 0.62, p < .001, and r = 0.33, p = .009, for correlations with changes in serum C-terminal telopeptide of type 1 collagen in the women and men, respectively). Our studies thus establish that in humans, circulating sclerostin levels are reduced by E but not by T. Moreover, consistent with recent data indicating important effects of Wnts on osteoclastic cells, our findings suggest that in humans, changes in sclerostin production may contribute to effects of E on bone resorption. © 2011 American Society for Bone and Mineral Research.
Decreases in estrogen levels contribute not only to early postmenopausal bone loss but also to bone loss with aging. While estrogen is critical for the maintenance of bone formation, the mechanism(s) of this effect remain unclear. Thus, we assessed the effects of 4 months of transdermal estradiol treatment (0.05 mg/day) of postmenopausal women as compared to no treatment (n = 16 per group) on the expression of genes in pre-specified pathways in freshly isolated bone marrow osteoprogenitor cells (hematopoietic lineage [lin]−/Stro1+). We also evaluated whether estrogen treatment modulated peripheral blood or bone marrow plasma levels of the Wnt antagonists, sclerostin and DKK1, as well as serotonin, OPG, RANKL, adiponectin, oxytocin, and inflammatory cytokines (TNFα, IL-1β, IL-6), as each of these molecules have recently been shown to play an important role in regulating osteoblast function and/or being responsive to estrogen. We observed a significant decrease in the expression of several proliferation markers (cyclin B1, cyclin E1, E2F1) and increase in adhesion molecules (N-cadherin) in bone marrow lin−/Stro1+ cells from estrogen-treated compared to control women. None of the peripheral blood or bone marrow plasma marker levels differed between the two groups, with the exception of sclerostin levels, which were significantly lower in the estrogen-treated as compared to the control women in peripheral serum (by 32%, P = 0.009) and in bone marrow plasma (by 34%, P = 0.017). There were significant differences in bone marrow versus peripheral plasma levels of several factors: sclerostin and OPG levels were higher in bone marrow as compared to peripheral plasma, whereas serotonin and adiponectin levels were higher in peripheral as compared to bone marrow plasma. In summary, our data directly assessing possible regulation by estrogen of osteoprogenitor cells in humans indicate that, consistent with previous studies in mice, estrogen suppresses the proliferation of human bone marrow lin−/Stro1+ cells, which likely represent early osteoprogenitor cells. Further animal and human studies are needed to define the role of the changes we observed in mRNAs for adhesion molecules in these cells and in local sclerostin production in bone in mediating the effects of estrogen on bone metabolism in humans.
This direct interventional study demonstrates that FSH does not regulate bone resorption in postmenopausal women.
ABSTRACT:Introduction: The mechanism(s) by which sex steroids regulate bone turnover in humans are unclear, and recent studies have suggested that follicle-stimulating hormone (FSH) may play an important role in regulating bone resorption. Materials and Methods: Fifty-nine men (median age, 69 yr) underwent suppression of sex steroids using a gonadotropin-releasing hormone (GnRH) agonist and aromatase blocker and were replaced with testosterone (T; 5 mg/d) and estradiol (E; 37.5 g/d). After assessment of bone resorption markers (serum C-terminal telopeptide of type I collagen [CTX] and TRACP5b), they were randomized to sex steroid deficiency (−T, −E), E alone (−T, +E), T alone (+T, −E), or both (+T, +E) and restudied 3 wk later. Bone marrow aspirates were obtained to isolate osteoblastic, T, and monocytic cells using magnetic-activated cell sorting. Results: Serum CTX and TRACP5b increased significantly (by 71% and 15%, p < 0.01 and < 0.001, respectively) in the −T, −E group, and these increases occurred despite a 60% suppression of serum FSH levels (p < 0.001) caused by the GnRH agonist. There were significant E (but not T) effects on preventing increases in serum CTx and TRACP levels. There was a nonsignificant trend (p ס 0.122) for E to suppress RANKL mRNA levels in bone marrow osteoblastic cells. Changes in mRNA levels for other cytokines (TNF-␣, interleukin (IL)-1␣, IL-1, IL-1ra, IFN-␥) in bone marrow cells were not significant. Conclusions: E has greater suppressive effects on bone resorption than T, and increased bone resorption after sex steroid deficiency can occur independently of changes in FSH secretion. E effects on bone resorption may be mediated by regulation of RANKL production by osteoblastic cells, although further studies using more highly purified cells may reduce the variability of the mRNA measurements and allow for clearer definition of the mediators of sex steroid action in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.