Background Samoa conducted eight nationwide rounds of mass drug administration (MDA) for lymphatic filariasis (LF) between 1999 and 2011, and two targeted rounds in 2015 and 2017 in North West Upolu (NWU), one of three evaluation units (EUs). Transmission Assessment Surveys (TAS) were conducted in 2013 (failed in NWU) and 2017 (all three EUs failed). In 2018, Samoa was the first in the world to distribute nationwide triple-drug MDA using ivermectin, diethylcarbamazine, and albendazole. Surveillance and Monitoring to Eliminate LF and Scabies from Samoa (SaMELFS Samoa) is an operational research program designed to evaluate the effectiveness of triple-drug MDA on LF transmission and scabies prevalence in Samoa, and to compare the usefulness of different indicators of LF transmission. This paper reports results from the 2018 baseline survey and aims to i) investigate antigen (Ag) prevalence and spatial epidemiology, including geographic clustering; ii) compare Ag prevalence between two different age groups (5–9 years versus ≥10 years) as indicators of areas of ongoing transmission; and iii) assess the prevalence of limb lymphedema in those aged ≥15 years. Methods A community-based cluster survey was conducted in 30 randomly selected and five purposively selected clusters (primary sampling units, PSUs), each comprising one or two villages. Participants were recruited through household surveys (age ≥5 years) and convenience surveys (age 5–9 years). Alere Filariasis Test Strips (FTS) were used to detect Ag, and prevalence was adjusted for survey design and standardized for age and gender. Adjusted Ag prevalence was estimated for each age group (5–9, ≥10, and all ages ≥5 years) for random and purposive PSUs, and by region. Intraclass correlation (ICC) was used to quantify clustering at regions, PSUs, and households. Results A total of 3940 persons were included (1942 children aged 5–9 years, 1998 persons aged ≥10 years). Adjusted Ag prevalence in all ages ≥5 years in randomly and purposively selected PSUs were 4.0% (95% CI 2.8–5.6%) and 10.0% (95% CI 7.4–13.4%), respectively. In random PSUs, Ag prevalence was lower in those aged 5–9 years (1.3%, 95% CI 0.8–2.1%) than ≥10 years (4.7%, 95% CI 3.1–7.0%), and poorly correlated at the PSU level (R-square = 0.1459). Adjusted Ag prevalence in PSUs ranged from 0% to 10.3% (95% CI 5.9–17.6%) in randomly selected and 3.8% (95% CI 1.3–10.8%) to 20.0% (95% CI 15.3–25.8%) in purposively selected PSUs. ICC for Ag-positive individuals was higher at households (0.46) compared to PSUs (0.18) and regions (0.01). Conclusions Our study confirmed ongoing transmission of LF in Samoa, in accordance with the 2017 TAS results. Ag prevalence varied significantly between PSUs, and there was poor correlation between prevalence in 5–9 year-olds and older ages, who had threefold higher prevalence. Sampling older age groups would provide more accurate estimates of overall prevalence, and be more sensitive for identifying residual hotspots. Higher prevalence in purposively selected PSUs shows local knowledge can help identify at least some hotspots.
Background Universal pneumococcal conjugate vaccine (PCV) programs began in Indigenous Australian children in 2001 and all children in 2005, changing to 13-valent PCV (PCV13) in 2011. We used laboratory data for invasive pneumococcal disease (IPD) and coded hospitalizations for noninvasive pneumococcal community-acquired pneumonia (PnCAP) to evaluate long-term impact. Methods Annual incidence (per 100 000 population) was calculated for age-specific total IPD, PCV13 non–7-valent PCV (PCV7) serotypes, and PnCAP by Indigenous status. Incidence in the pre–universal PCV7 (2002–2004), early PCV7 (2005–2007), pre-PCV13 (2008 to mid-2011), and post-PCV13 (mid-2011 to 2016) periods was used to calculate incidence rate ratios (IRRs). Results In the total population, all-age incidence of IPD declined from 11.8 pre-PCV7 to 7.1 post-PCV13 (IRR, 0.61 [95% confidence interval {CI}, .59–.63]) but for PnCAP declined among ages <1 year (IRR, 0.34 [95% CI, .25–.45]) and 1–4 years (IRR, 0.50 [95% CI, .43–.57]) but increased significantly among age ≥5 years (IRRs, 1.08–1.14). In Indigenous people, baseline PCV13 non-PCV7 IPD incidence was 3-fold higher, amplified by a serotype 1 epidemic in 2011. By 2015–2016, although incidence of IPD and PnCAP in children aged <5 years decreased by 38%, neither decreased in people aged ≥5 years. Conclusions Fifteen years post-PCV and 5 years post-PCV13, direct and indirect impact on IPD and PnCAP differed by age and between Indigenous and non-Indigenous people, with potential implications for long-term PCV impact in comparable settings. Fifteen years after pneumococcal conjugate vaccine (PCV) introduction and 5 years post-PCV13, direct and indirect impact on invasive pneumococcal disease and pneumococcal community-acquired pneumonia differed by age and between Indigenous and non-Indigenous people, with potential implications for long-term PCV impact in comparable settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.