Background CD33 is genetically linked to Alzheimer’s disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant. Methods We have developed two models to test the role of hCD33m. The first is a new strain of transgenic mice expressing hCD33m in the microglial cell lineage. The second is U937 cells where the CD33 gene was disrupted by CRISPR/Cas9 and complemented with different variants of hCD33. Primary microglia and U937 cells were tested in phagocytosis assays and single cell RNA sequencing (scRNAseq) was carried out on the primary microglia. Furthermore, a new monoclonal antibody was developed to detect hCD33m more efficiently. Results In both primary microglia and U937 cells, we find that hCD33m enhances phagocytosis. This contrasts with the human CD33 long isoform (hCD33M) that represses phagocytosis, as previously demonstrated. As revealed by scRNAseq, hCD33m+ microglia are enriched in a cluster of cells defined by an upregulated expression and gene regulatory network of immediate early genes, which was further validated within microglia in situ. Using a new hCD33m-specific antibody enabled hCD33m expression to be examined, demonstrating a preference for an intracellular location. Moreover, this newly discovered gain-of-function role for hCD33m is dependent on its cytoplasmic signaling motifs, dominant over hCD33M, and not due to loss of glycan ligand binding. Conclusions These results provide strong support that hCD33m represents a gain-of-function isoform and offers insight into what it may take to therapeutically capture the AD-protective CD33 allele.
Emerging evidence suggests that host glycans influence infection by SARS-CoV-2. Here, we reveal that the receptor-binding domain (RBD) of the spike (S)-protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (SA), with preference for the oligosaccharide of monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind the RBD. The monomeric affinities (Kd = 100-200 μM) of gangliosides for the RBD are similar to heparan sulfate, another negatively charged glycan ligand of the RBD proposed as a viral co-receptor. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to ACE2-expressing cells is decreased upon depleting cell surface SA level using three approaches: sialyltransferase inhibition, genetic knock-out of SA biosynthesis, or neuraminidase treatment. These effects on RBD binding and pseudotyped viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.
Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid–binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction.
Emerging evidence suggests that host glycans influence infection by SARS-CoV-2. Here, we reveal that the receptor-binding domain (RBD) of the spike (S)-protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (SA), with preference for the oligosaccharide of monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind the RBD. The monomeric affinities (Kd = 100-200 μM) of gangliosides for the RBD are similar to heparan sulfate, another negatively charged glycan ligand of the RBD proposed as a viral co-receptor. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to ACE2-expressing cells is decreased upon depleting cell surface SA level using three approaches: sialyltransferase inhibition, genetic knock-out of SA biosynthesis, or neuraminidase treatment. These effects on RBD binding and pseudotyped viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.