Category number effects on rule-based and information-integration category learning were investigated. Category number affected accuracy and the distribution of best-fitting models in the rule-based task but had no effect on accuracy and little effect on the distribution of best-fining models in the information-integration task. In the 2 category conditions, rule-based learning was better than information-integration learning, whereas in the 4 category conditions, unidimensional and conjunctive rule-based learning was worse than information-integration learning. Rule-based strategies were used in the 2-category/rule-based condition, but about half of the observers used rule-based strategies in the 4-category unidimensional and conjunctive rule-based conditions. Information-integration strategies were used in the 4-category/ information-integration condition and by the end of training were used in the 2-category/information-integration condition.
Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.